Graph Element Analysis图形元素的分析.ppt_第1页
Graph Element Analysis图形元素的分析.ppt_第2页
Graph Element Analysis图形元素的分析.ppt_第3页
Graph Element Analysis图形元素的分析.ppt_第4页
Graph Element Analysis图形元素的分析.ppt_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

graphelementanalysis,woochanghwangdepartmentofcomputerscienceandengineeringstateuniversityofnewyorkatbuffalo,introductionrealworldnetworkscentralitiesmotivationbridgingcentralitybridgecutdiscussionfutureworks,introduction,manyrealworldsystemscanbedescribedasnetworks.socialrelationships:e.g.collaborationrelationshipsinacademic,entertainment,businessarea.technologicalsystems:ernettopology,www,ormobilenetworks.biologicalsystems:e.g.regulatory,metabolic,orinteractionrelationships.almostalloftheserealworldnetworksarescale-free.,realworldnetworks,yeastppinetwork,realworldnetworks,proteomsize(pdb),realworldnetworks,powerlawdegreedistribution:richgetrichersmallworld:asmallaveragepathlengthmeanshortestnode-to-nodepathcanreachanynodesinasmallnumberofhops,56hopsrobustness:resilientandhavestrongresistancetofailureonrandomattacksandvulnerabletotargetedattackshierarchicalmodularity:alargeclusteringcoefficienthowmanyofanodesneighborsareconnectedtoeachotherdisassortativeorassortativebiologicalnetworks:disassortativesocialnetworks:assortative,realworldnetworks,e.ravaszetal.,science,2002,realworldnetworks,proteinnetworks,metabolicnetworks,realworldnetworks,complexsystemsmaintaintheirbasicfunctionsevenundererrorsandfailures(cellmutations;internetrouterbreakdowns),realworldnetworks,robust.for3,removingnodesdoesnotbreaknetworkintoislands.veryresistanttorandomattacks,butattackstargetingkeynodesaremoredangerous.,maxclustersize,pathlength,centralities,degreecentrality:numberofdirectneighborsofnodevwheren(v)isthesetofdirectneighborsofnodev.stresscentrality:thesimpleaccumulationofanumberofshortestpathsbetweenallnodepairswherest(v)isthenumberofshortestpathspassingthroughnodev.,centralities,closenesscentrality:reciprocalofthetotaldistancefromanodevtoalltheothernodesinanetwork(u,v)isthedistancebetweennodeuandv.eccentricity:thegreatestdistancebetweenvandanyothervertex,centralities,shortestpathbasedbetweennesscentrality:ratioofthenumberofshortestpathspassingthroughanodevoutofallshortestpathsbetweenallnodepairsinanetworkstisthenumberofshortestpathsbetweennodesandtandst(v)isthenumberofshortestpathspassingonanodevoutstcurrentflowbasedbetweennesscentrality:theamountofcurrentthatflowsthroughvinanetworkrandomwalkbasedbetweennesscentrality,centralities,markovcentrality:valuesfornodesshowwhichnodeisclosertothecenterofmass.morecentralnodescanbereachedfromallothernodesinashorteraveragetime.wherethemeanfirstpassagetime(mfpt)msvinthemarkovchainandnis|r|,risagivenrootset.wherendenotesthenumberofstepstakenanddenotestheprobabilitythatthechainstartingatstatesandfirstreturnstostatetinexactlynsteps.,centralities,informationcentrality:incorporatesthesetofallpossiblepathsbetweentwonodesweightedbyaninformation-basedvalueforeachpath.wherewithlaplacianlandj=11t,andistheelementonthesthrowandsthcolumninci.itmeasurestheharmonicmeanlengthofpathsendingatavertexs,whichissmallerifshasmanyshortpathsconnectingittoothervertices.randomwalkbasedclosenesscentralityisequivalenttoinformationcentrality,centralities,eigenvectorcentrality:ameasureofimportanceofnodesinanetworkusingtheadjacencyandeigenvectormatrices.wherecivisaeigenvectorandisaneigenvalue.onlythelargesteigenvaluewillgeneratethedesiredcentralitymeasurement.hubbelindex,katzstatusindex,etc.,centralities,bargaincentraity:inbargainingsituations,itisadvantageoustobeconnectedtothosewhohavefewoptions;powercomesfrombeingconnectedtothosewhoarepowerless.beingconnectedtopowerfulpeoplewhohavemanycompetitivetradingpartnersweakensonesownbargainingpower.whereisascalingfactor,istheinfluenceparameter,aistheadjacencymatrix,andisthen-dimentionalvectorinwhicheveryentryis1.,centralities,pagerank:linkanalysisthatscoresrelativelyimportanceofwebpagesinawebnetwork.thepagerankofawebpageisdefinedrecursively;apagehasahighimportanceifithasalargenumberofincominglinksfromhighlyimportantwebpages.pagerankalsocanbeviewedasaprobabilitydistributionofthelikelihoodthatarandomsurferwillarriveatanyparticularpageatcertaintime.hypertextinducedtopicselection(hits),etc.,centralities,subgraphcentrality:accountsfortheparticipationofanodeinallsubgraphsofthenetwork.thenumberofclosedwalksoflengthkstartingandendingnodevinthenetworkisgivenbythelocalspectralmomentsk(v).,observation,scale-freenetworks,basicpropertiespowerlawdegreedistributionsmallworldrobustnesshierarchicalmodularitydisassortativeorassortativethereshouldbesomebridgingnodes/edgesbetweenmodulesinscale-freenetworksbasedontheseobservations,andwedidrecognizethebridgingnodes/edgesbyvisualinspectionofsmallexamplenetworks.findingthebridgingnodes/edges,whicharelocatingbetweenmodules,isaninterestingandimportantproblemformanyapplicationsonmanydifferentfields.(networksrobustness,pathsprotection,effectivetargetsfinding,etc.),motivation,existingmeasurementsarenotenoughforidentifyingthebridgingnodes/edges:thoseexistingindicesaredominatedbydegreeofthenodeofinterest.betweennessofanedgealsohaveastronginclinationtoattachontohighdegreenodes.hightendencyofclutteringinthecenterofthenetwork.so,itishardtodifferentiatethebridgingnodes/edgesfromotherkindsofnodes/edges.ourfocusinthisresearchistotargetvulnerableandcentralcomponentsinanetworkfromatotallydifferentpointofview.,bridge,bridgeabridgeshouldbelocatedonanimportantpath,e.g.shortestpath.abridgeshouldbelocatedbetweenmodules.theneighborregionsofabridgingnodeshouldhavelowrangeofpublicdomainamongthem.,betweennessandbridgingcoefficient,betweenness:globalimportanceofanode/edgefromshortestpathsviewpoint.bridgingcoefficient:ameasurementthatmeasuringtheextenthowwellanodeoredgeislocatedbetweenwellconnectedregions.theaverageprobabilityofleavingthedirectneighborsub-graphofanodev.,bridgingcoefficient,figure1.bridgingcoefficient,bridgingcentrality,bridgingcentralityisdefinedastheproductoftherankofthebetweennessandtherankofthebridgingcoefficient.,applicationonasyntheticnetwork,figure2.figure2aand2bshowstheresultsofbridgingandbetweennesscentralityinthesyntheticnetworkrespectively.thenetworkcontained162nodesand362edgesandwascreatedbyaddingbridgingnodestothreeindependentlygeneratedsub-networks.figure2cshowstheresultsforasyntheticnetworkwherein500nodeswereaddedtoeachsub-graphinfigure2aandcontainingthesamebridgingnodes.,applicationonwebnetworkexamples,figure3.resultsforwebnetworks:figure1aand1bshowstheresultsfortheatthenodeswiththelowestvaluesofbridgingcentralityarethe85th-100thpercentilesandarehighlightedinwhitecircles.thecolormapforthepercentilevaluesisshowninthefigure.,applicationonsocialnetworkexamples,figure4.resultsforsocialnetworks:figure2aand2bshowstheresultsforthelesmiserablecharacternetworkandphysicscollaborationnetwork,respectively.thenodeswiththehighest0-5thpercentileofvaluesforthebridgingcentralityarehighlightedinredcircles;thenodeswiththelowestvaluesofbridgingcentralityarethe85th-100thpercentilesandarehighlightedinwhitecircles.thenodescorrespondingtovaljean(v),javert(j),pontmercy(p)andcosette(c)arelabeledinfigure4a.thenodescorrespondingtorothman(r),redner(r2),dodds(d),krapivsky(k)andstanley(s)arelabeledinfigure2b.thecolormapforthepercentilevaluesisshowninthefigure.,applicationonbiologicalnetworkexamples,figure5.resultsforbiologicalnetworks:figure3aand3bshowstheresultsthecardiacarrestnetworkandyeastmetabolicnetwork,respectively.thenodescorrespondingtosrc,shcandjak2(j2)arelabeledinfigure3a.thenodeswiththehighest0-5thpercentileofvaluesforthebridgingcentralityarehighlightedinredcircles;thenodeswiththelowestvaluesofbridgingcentralityarethe85th-100thpercentilesandarehighlightedinwhitecircles.thecolormapforthepercentilevaluesisshowninthefigure.,assessingnetworkdisruption,structuralintegrityandmodularity,figure6.sequentialnoderemovalanalysisontheyeastmetabolicnetwork,assessingabilitytooccupytopologicalposition,figure7ashowsthecliqueaffiliationofthenodesdetectedbythreemetrics,thebridgingcentrality(blacksquares),degreecentrality(opencircles),betweennesscentrality(blackcircles).maximalcliqueswereidentifiedintheyeastppinetwork,andthenwemeasuredwhetherthedetectednodesforeachmetricareintheidentifiedcliquesornot.infigure7b,randombetweennessbetweendetectedcliqueswasmeasuredinthecliquegraphforeachmetric,bridgingcentrality(blacksquares),degreecentrality(opencircles),betweennesscentrality(blackcircles).figure7ccomparesthenumberofsingletonsthatweregeneratedaccordingtosequentialnodedeletionforeachmetricsuchasbridgingcentrality(dotline),degreecentrality(grayline),betweennesscentrality(blackline).thenodeswiththehighestvaluesforeachofthesenetworkmetricsweresequentiallydeletedandenumeratedthenumberofsingletonsthatwereproduced.,assessingabilitytooccupymodulatingposition,figure8.thebiologicalandthetopologicalcharacteristicsofthedirectneighborsofthenodeorderedbytwometrics,thebridgingcentrality(blackbar),betweennesscentrality(whitebar).figure6(a)showsthegeneexpressioncorrelationonthedirectneighborsofeachpercentile.figure6(b)showstheaverageclusteringcoeffcientofthenodesineachpercentile.,druggability,thenodescorrespondingtoshc,src,andjak2hadthehighest,2ndand3rdhighestbridgingcentralityvalues.thetargetofreceptorantagonistdrugssuchaslosartan,alsosignalsviasrcandshcincardiacfibroblasts(cardiacstructuraltissue).jak2activationisakeymediatorofaldosterone-inducedangiotensin-convertingenzymeexpression;thelatteristhetargetofdrugssuchascaptopril,enaprilandotherangiotensin-convertingenzymeinhibitors(relatedhighbloodpressure),druggability,c21steroidhormonemetabolismnetworkthemetaboliteswiththehighestvaluesofbridgingcentralitywere:i)corticosterone,ii)cortisol,iii)11-hydroxyprogesterone,iv)pregnenoloneand,v)21-deoxy-cortisol.corticosteroneandcortisolareproducedbytheadrenalglandsandmediatetheflightorfightstressresponse,whichincludeschangestobloodsugar,bloodpressureandimmunemodulation.,druggability,steroidbiosynthesisnetworkthemetaboliteswiththehighestvaluesofbridgingcentralitywere:i)presqualenediphosphate,ii)squalene,iii)(s)-2,3-epoxy-squalene,iv)prephytoenediphosphateand,v)phytoene.anti-fungalagents,apromisingtargetforanti-cholesteroldrugs(25)andtheanti-cholesterolemicactivity,bridgecutalgorithm,iterativegraphpartitioningalgorithmcomputebridgingcentralityforeachedgecutthehighestbridgingedgeidentifyanisolatedmoduleasaclusterifthedensityoftheisolatedmoduleisgreaterthanathreshold.,clusteringvalidation,f-measuredavies-bouldinindexwherediam(ci)isthediameterofclusterciandd(ci;cj)isthedistancebetweenclusterciandcj.so,d(ci;cj)issmallifclusteriandjarecompactandtheirscentersarefarawayfromeachother.therefore,dbwillhaveasmallvaluesforagoodclustering.,bridgecut,ta

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论