PRML_ch7.ppt_第1页
PRML_ch7.ppt_第2页
PRML_ch7.ppt_第3页
PRML_ch7.ppt_第4页
PRML_ch7.ppt_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Ch7.SparseKernelMachinesPatternRecognitionandMachineLearning,C.M.Bishop,2006.,SummarizedbyS.KimBiointelligenceLaboratory,SeoulNationalUniversityhttp:/bi.snu.ac.kr/,2,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,Contents,MaximumMarginClassifiersOverlappingClassDistributionsRelationtoLogisticRegressionMulticlassSVMsSVMsforRegressionRelevanceVectorMachinesRVMforRegressionAnalysisofSparsityRVMsforClassification,3,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,MaximumMarginClassifiers,ProblemsettingsTwo-classclassificationusinglinearmodelsAssumethattrainingdatasetislinearlyseparableSupportvectormachineapproachesThedecisionboundaryischosentobetheoneforwhichthemarginismaximized,supportvectors,4,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,MaximumMarginSolution,Foralldatapoints,ThedistanceofapointtothedecisionsurfaceThemaximummarginsolution,5,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,DualRepresentation,IntroducingLagrangemultipliers,Min.pointssatisfythederivativesofLw.r.t.wandbequal0Dualrepresentation,FindAppendixEformoredetails,6,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,ClassifyingNewData,OptimizationsubjectstoFoundbysolvingaquadraticprogrammingproblem,Karush-Kuhn-Tucker(KKT)ConditionsAppendixE,:supportvectors,or,O(N3),7,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,ExampleofSeparableDataClassification,Figure7.2,8,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,OverlappingClassDistributions,AllowsomemisclassifiedexamplessoftmarginIntroduceslackvariables,9,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,SoftMarginSolution,MinimizeKKTconditions:,:trade-offbetweenminimizingtrainingerrorsandcontrollingmodelcomplexity,:supportvectors,or,10,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,DualRepresentation,DualrepresentationClassifyingnewdataandobtainingb(hardmarginclassifiers),11,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,AlternativeFormulation,v-SVM(Schlkopfetal.,2000),-Upperboundonthefractionofmarginerrors-Lowerboundonthefractionofsupportvectors,12,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,ExampleofNonseparableDataClassification(v-SVM),13,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,SolutionsoftheQPProblem,Chunking(Vapnik,1982)Idea:thevalueofLagrangianisunchangedifweremovetherowsandcolumnsofthekernelmatrixcorrespondingtoLagrangemultipliersthathavevaluezeroProtectedconjugategradients(Burges,1998)Decompositionmethods(Osunaetal.,1996)Sequentialminimaloptimization(Platt,1999),14,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,RelationtoLogisticRegression(Section4.3.2),Fordatapointsonthecorrectside,Fortheremainingpoints,:hingeerrorfunction,15,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,RelationtoLogisticRegression(Contd),FrommaximumlikelihoodlogisticregressionErrorfunctionwithaquadraticregularizer,16,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,ComparisonofErrorFunctions,Hingeerrorfunction,Errorfunctionforlogisticregression,Misclassificationerror,Squarederror,17,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,MulticlassSVMs,One-versus-the-rest:KseparateSVMsCanleadinconsistentresults(Figure4.2)ImbalancedtrainingsetsPositiveclass:+1,negativeclass:-1/(K-1)(Leeetal.,2001)AnobjectivefunctionfortrainingallSVMssimultaneously(WestonandWatkins,1999)One-versus-one:K(K-1)/2SVMsBasedonerror-correctingoutputcodes(Allweinetal.,2000)Generalizationofthevotingschemeoftheone-versus-one,18,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,SVMsforRegression,Simplelinearregression:minimize-insensitiveerrorfunction,quadraticerrorfunction,-insensitiveerrorfunction,19,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,SVMsforRegression(Contd),Minimize,20,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,DualProblem,21,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,Predictions,KKTconditions:,(fromderivativesoftheLagrangian),22,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,AlternativeFormulation,v-SVM(Schlkopfetal.,2000),fractionofpointslyingoutsidethetube,23,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,Exampleofv-SVMRegression,24,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,RelevanceVectorMachines,SVMOutputsaredecisionsratherthanposteriorprobabilitiesTheextensiontoK2classesisproblematicThereisacomplexityparameterCKernelfunctionsarecenteredontrainingdatapointsandrequiredtobepositivedefiniteRVMBayesiansparsekerneltechniqueMuchsparsermodelsFasterperformanceontestdata,25,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,RVMforRegression,RVMisalinearforminChapter3withamodifiedprior,26,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,RVMforRegression(Contd),andaredeterminedusingevidenceapproximation(type-2maximumlikelihood)(Section3.5),Fromtheresult(3.49)forlinearregressionmodels,Maximize,27,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,RVMforRegression(Contd),TwoapproachesByderivativesofmarginallikelihoodEMalgorithmSection9.3.4Predictivedistribution,Section3.3.2,28,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,ExampleofRVMRegression,MorecompactthanSVMParametersaredeterminedautomaticallyRequiremoretrainingtimethanSVM,RVMregression,v-SVMregression,29,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,MechanismforSparsity,onlyisotropicnoise,=,afinitevalueof,30,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,SparseSolution,Pulloutthecontributionfromiin,Using(C.7),(C.15)inAppendixC,31,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,SparseSolution(Contd),ForlogmarginallikelihoodfunctionL,Stationarypointsofthemarginallikelihoodw.r.t.i,Sparsity:measurestheextenttowhichoverlapswiththeotherbasisvectors,Qualityof:representsameasureofthealignmentofthebasisvectorwiththeerrorbetweentandy-i,32,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,SequentialSparseBayesianLearningAlgorithm,InitializeInitializeusing,with,withtheremainingEvaluateandforallbasisfunctionsSelectacandidateIf(isalreadyinthemodel),updateIf,addtothemodel,andevaluateIf,removefromthemodel,andsetUpdateGoto3untilconverged,33,(C)2007,SNUBiointelligenceLab,http:/bi.snu.ac.kr/,RVMforClassification,Probabilisticlinearclassificationmodel(Chapter4)withARDprior,-Initialize-BuildaGaussianapproximationtotheposterio

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论