![帮你归纳总结(五):导数中常见的分类讨论[来源:学优高考网347352].doc_第1页](http://file.renrendoc.com/FileRoot1/2019-11/27/686ba9da-282e-4f8f-aa54-a40d9529293f/686ba9da-282e-4f8f-aa54-a40d9529293f1.gif)
![帮你归纳总结(五):导数中常见的分类讨论[来源:学优高考网347352].doc_第2页](http://file.renrendoc.com/FileRoot1/2019-11/27/686ba9da-282e-4f8f-aa54-a40d9529293f/686ba9da-282e-4f8f-aa54-a40d9529293f2.gif)
![帮你归纳总结(五):导数中常见的分类讨论[来源:学优高考网347352].doc_第3页](http://file.renrendoc.com/FileRoot1/2019-11/27/686ba9da-282e-4f8f-aa54-a40d9529293f/686ba9da-282e-4f8f-aa54-a40d9529293f3.gif)
![帮你归纳总结(五):导数中常见的分类讨论[来源:学优高考网347352].doc_第4页](http://file.renrendoc.com/FileRoot1/2019-11/27/686ba9da-282e-4f8f-aa54-a40d9529293f/686ba9da-282e-4f8f-aa54-a40d9529293f4.gif)
全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
帮你归纳总结(五):导数中的分类讨论问题分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”一、参数引起的分类讨论 例:已知函数, 当时,讨论函数的单调性。 解: 的定义域为(0,+), 当时,0,故在(0,+)单调递增; 当01时,令=0,解得. 则当时,0;时,0. 故在单调递增,在单调递减. 例:已知函数,求函数的单调区间; 解:(1),所以, ,由得:所以,上为增函数; 上为增函数;在上为减函数;二、判别式引起的分类讨论 例:已知函数,讨论在定义域上的单调性。 解:由已知得, (1)当,时,恒成立,在上为增函数 (2)当,时, 1)时,在 上为减函数,在上为增函数, 2)当时,故在上为减函数, 在,)上为增函数 综上,当时,在上为增函数; 当)时,在上为减函数, 在上为增函数, 当a0时,在(0, 上为减函数,在, )上为增函数3、 二次函数对称轴与给定区间引起的分类讨论例:已知函数,令,若在 上单调递增,求实数的取值范围. 解:由已知得, , 又当时,恒有, 设,其对称轴为, (i) 当,即时,应有 解得:,所以时成立, (ii) 当,即时,应有即: 解得, 综上:实数的取值范围是。4、 二项系数引起的分类讨论4.已知函数.(1)讨论函数的单调性;(2)设a2,求证:对任意x1,x2(0,),|f(x1)f(x2)|4|x1x2|.解析:(1)f(x)的定义域为(0,),f(x)2ax.当a0时,f(x)0,故f(x)在(0,)上单调递增当a1时,f(x)0,故f(x)在(0,)上单调递减当1a0时,令f(x)0,解得x, 则当时,f(x)0;当时,;故在上单调递增,在上单调递减(2) 不妨设x1x2.由于a2,故f(x)在(0,)上单调减少, 所以|f(x1)f(x2)|4|x1x2|等价于f(x2)f(x1)4x14x2,即f(x2)4x2f(x1)4x1.令g(x)f(x)4x,则g(x)2ax4.于是g(x)0.从而g(x)在(0,)上单调减少,故g(x1)g(x2),即f(x1)4x1f(x2)4x2,故对任意x1,x2(0,),|f(x1)f(x2)|4|x1x2|.三、针对性练习 1.已知函数 ()求函数的单调区间;()当时,设函数,若在区间上至少存在一个, 使得成立,试求实数的取值范围 解:()由知: 当时,函数的单调增区间是,单调减区间是; 当时,函数的单调增区间是,单调减区间是; ()令, 则. 1. 当时,由得, 从而, 所以,在上不存在使得 ; 2. 当时,, 在上恒成立, 故在上单调递增。 故只要,解得 综上所述,的取值范围是。2.已知函数,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年温州永嘉县人民医院医共体分院招聘劳务派遣人员2人考前自测高频考点模拟试题及参考答案详解一套
- 2025广西农村合作金融机构高校毕业生招聘473人考前自测高频考点模拟试题及一套参考答案详解
- 2025年哈尔滨市香电幼儿园招聘3人考前自测高频考点模拟试题及答案详解(考点梳理)
- 2025办公用品采购合同协议书
- 2025年阜阳颍上县人民医院引进博士研究生2人考前自测高频考点模拟试题及答案详解(典优)
- 食安员初级考试题库及答案训练题
- 湖南职称土建考试题库及答案
- 广东表演考试题库及答案
- 青岛春考知识考试题库及答案
- 单招数学考试试卷及答案
- 2025云南昆明元朔建设发展有限公司第一批收费员招聘20人考试参考试题及答案解析
- 2026农业银行四川省分行秋季校园招聘1374人考试参考题库及答案解析
- 建筑垃圾回收利用全过程信息化管理方案
- 第9课《天上有颗“南仁东星”》 课件 2025-2026学年统编版语文八年级上册
- 《山水相逢》课件2025-2026学年人美版(2024)八年级美术上册
- 建筑业企业资质标准
- 工会招聘笔试题型及答案
- 护理质量改善项目申报书
- 大健康生活馆运营手册
- 室内钢平台吊装方案
- KTV公主部服务详细流程
评论
0/150
提交评论