




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章 数学中的美学你知道多少?一、欣赏对称美对称通常是指图形或物体对某个点,直线或平面而言,在大小、形状和排列上具有一一对应关系,在数学中,对称的概念略有拓广常把某些具有关连或对立的概念视为对称,这样对称美便成了数学中的一个重要组成部分,对称美是一个广阔的主题,在艺术和自然两方面都意义重大,数学则是它根本,美和对称紧密相连。 大自然中具备对称美的事物有许许多多,如枫叶、雪花等等,对称本身就是一种和谐、一种美。在数学中的应用也非常广泛,如:大家都非常熟悉的轴对称图形等等,其实根据对称原理在小学数学中各知识领域,均可发现这一规律的应用。如何让学生掌握对称这一基本原理去解决一些实际问题,找到事物之间的内在统一性,用数学的思想去内化这一即简单,又蕴涵深刻哲理的原理,这需要我们深层了解隐藏在问题后面的本质特征,现根据笔者在教学中发现的一些案例,来阐述如何发现数学中的对称美。一、 从回文数中得到启发,巧解等差数列回文数有许多如:2002年就是一个回文数,下一个回文数就要等到2112年,整数乘法中最有趣的一个回文数就是:11=1,1111=121,111111=12321。根据这一规律可以巧算出:111111111111111111=12345678987654321,学生对于回文数这一特殊结果,大都觉得非常惊讶,对此产生浓厚的兴趣,感叹数的对称美。对称作为一种美,在宇宙万物中成为一个永恒的定理,就象有阴就有阳,有黑就有白一样,说的更玄乎一些,像现代物理学理论中所推论的那样有正物质就有反物质,如,我们生活中所看到感受到的一切客观事物都是正物质,同样宇宙中也存在我们看不见的能量和正物质一样相等的反物质,这样宇宙才均衡,就像宇宙中有你,同样也存在着“反你”,如果有一天“你们”一握手,那么你和“反你”就顿时消失,就像5+(-5)=0一样,说来有些荒唐,可是这种设想在解答一些难题时,却显得巧妙、易懂。如在小学对程度比较好的学生上等差数列求和时,大都用公式:(首项+末项)项数2来教学,可对于小学生要掌握和理解有一定困难。如一道“有女不善织”的古代算术题:有位妇女不善织布,她每天织的布都比上一天要减少一些,减少的数量是相等的,她第一天织了五尺,最后一天织了一尺,一共织了三十天,她一共织了多少尺布?这题的难点在于除了第一天和最后一天,中间每天织的布不是整数,而且每天比上一天少织多少布也不易求。可运用对称的思想是这样解答的:假设还有另一位姑娘也和这位妇女一样织布,只不过她与这位妇女织布的情况刚好相反:姑娘每天织的布都比上一天要增加一些,增加的数量是相等的,她第一天织一尺,最后一天织五尺,也织了三十天,由此可知,姑娘和妇女所织布的总长度是相等的,妇女所织的布每天减少的数量与姑娘织布每天增加的布的数量是相等的,因此每天两人共织的布为六尺,三十天共织630=180尺,每人织90尺。这题的巧妙之处在于将抽象的一组等差数列求和转化为形象生动的形似回文数一般的对称求和方法,也和物理学中所说的正物质和反物质有异曲同工之妙。其实做为等差数列求和都可以用这种思路解答,运用对称的思维来理解等差数列比单纯讲求和公式要形象、生动的多。二、 从轴对称图形中发现对称原理的运用 根据轴对称图形的一半和对称轴可以精确的画出轴对称图形的另一半图形,这是在教学了轴对称图形后常见的习题。在数学中,轴对称图形同时也为人们研究数学提供了某些启示,例如它在博弈问题中也常运用这一原理。如:桌面上有21个棋子,排成一排,你一次可以拿一粒也可以拿两粒棋子,甚至可以拿三个棋子。想拿哪里的棋子都行,不必按顺序拿,但拿两粒或三粒棋子时必须是相邻的即中间没有空隔或其他棋子,问:“两人轮流拿谁拿到最后一粒谁赢,你如果先拿能保证赢吗?”这题看上去挺复杂,按排列组合众多拿法要想一一分析清楚太费力,其实运用对称原理就非常简单,先拿的人只要先拿走中间一粒,即第十一粒棋,这样左、右两边各剩十粒,这样对方拿左边的棋子,你就拿右边的棋子,并且个数和位置和他对称,如果对方拿右边的棋子,你就按照他拿左边的棋子,总之只要保持左、右两边的棋子剩下的个数和位置一样,只要他有的拿,你也有的拿,因此最后一粒必然落入你手中,因此先拿必胜,如果棋子是20粒(偶数个),你就先拿中间的两粒,让左右两边各剩9粒棋子,这样你就必胜。类似的题目还有如:用若干一元的硬币两人轮流将它摆在一个大圆盘上,要求硬币之间不能重叠,谁摆不下谁算输,是先摆赢还是后摆赢?显然根据对称原理,先摆的人只要先占住圆心,以后对方摆哪你就照他在对面对称着摆出,只要他有空间摆,那么在相对称的地方也必定有空间摆,直至对方摆不下为止,对方先输。其实这两题的思维方法都来自轴对称图形的基本特征,教师在教学完轴对称图形的内容后可以适当的渗透这方面的知识,学生即乐于学习,又加深对轴对称图形知识的运用和深层理解,发现对称的美,感受到数学的魅力。三、在方程解题中渗透对称思想,帮助学生从算术思维到代数思维的转变。大家都知道算术思维是逆向思维,而方程思维是顺向思维。用方程的思维可以解答一些算术方法较难解决的问题。可小学生对算术的解法根深蒂固,可对方程的解法却始终有排斥的心理。如六年级下册的正反比例应用题,许多学生用算术解都做的出来,可是用比例解却总是搞不清正反比例,原因在于他们受算术解法知识的负迁移影响,努力去找问题的答案而不是去找不变的量,对方程缺乏深层的理解,没有认识到方程本身就是运用对称的原理,不论正反比例关键是要找到不变的量,方程的左边和右边就像轴对称图形的左右两边虽然不完全一样但是大小一样。左边和右边找到了不变的量也就找到了方程。同样的在解方程中也可运用对称的原理使得问题简单的多,如:解方程:5x+6=3x+11这题方程的左右两边都有x时如果用初中的知识移项很好解答,可在小学用方程对称的原理也很容易解答:如果方程的左右两边同时拿走3 x,方程左右两边还成立吗?显然依然相等,因此这题就简化为:2 x+6=11,这样的思维方法每个学生都明白,同时也加深了对方程的理解。“对称”在数学上的表现是普遍的:轴对称、中心对称、对称多项式等,从奇偶性上也可以视为对称,从运算关系角度看互逆运算也可看为对称关系,还有许许多多的地方都体现出它的魅力,就像亚里士多德所说的那样:虽然数学没有明显地提到善和美,但善和美也不能和数学完全分离。因为美的主要形式就是秩序、匀称和确定性,这些正是数学所研究的原则。我们做为新课程理念指导下的教师不仅要传授学生知识,更重要的是要培养学生发现美、创造美的能力,让学生在学数学的过程中发现数学的美,深深的被数学的魅力感动,进一步提高了数学素养,努力去探索世界的真、善、美,就像一位物理学家所说的那样:如果一个理论它是美的,那它一定是个真理。二、黄金分割知多少0618我的人生黄金分割点黄金分割点,只要世间万物的组合合乎它,就是最为完美的,这是一个美学常识。其实世事之理往往是相通的,有一天,我在想,如果我人生道路的组合也是符合黄金分割点,那就是完美的一生,至少是无悔的一生了!但我知道自己一辈子都不可能达到这种程度,只能像数学的极限那样向着这个目标无限地趋近。然而规律本如此,能趋近多少就是多少,只要用心了尽力了,就好了,对吧?!人生嘛,要做的事情那么多,有时连自己都感到千头万绪,找不到边际,所以有时我们会感慨前途茫然!但是一个人一定要学会把握事物本质的功夫,总不能雾里看花。无论我的人生道路有怎样多的事情需要做,其实都离不开“付出与回报”这五个字,不是吗?!无论是对自己的事,还是对社会的事,都离不开这五个字。而自己已经走过人生的三分之一路程,看到周围的人每天都为着这五个字在奔波在争斗,总是在计较着付出与回报的比值,心理总是处于失衡的边缘,为了生活,没了自我。这是性格悲剧还是时代悲剧呢?!我不知如何回答,我只知道自己绝不能成为这种剧情的导演和演员!所以我才一直思考如何摆脱这种困境,我要活开心自由,而不是拖着疲惫的灵魂!现在的人都不太喜欢人文的东西,因为这个时代崇尚实用主义的东西。但是我却往往能在人文的东西中找到解决自己困境的出路,就比如这个黄金分割定律吧。如果把人生概括成“付出与回报”,那两者应该按照什么样的比例组合才好呢?依我看,就按黄金分割比例组合最好吧,付出占0.618的比例,回报占0.382的比例。也就是说付出要多于回报,大概就占人生的0.618这么多吧。我提出这种看法,相信不会引起多少人的共鸣,因为按经济学的常识,人们肯定是追求回报大于付出,不然就亏了,没人干了。其实我从不反对经济学的常识,并深知自己也是个“经济人”,不可能逃脱经济规律的结束。之所以提出这个看法,是因为我除了是一个“经济人”外,还要是一个“自由人”。因为没有一样东西可以永远拥有,不少时候,得失就在一瞬间完成,为了不让自己在这种大起大落面前一蹶不振,0.382的回报已经足够了,已经足够自己不错地生活了,即使失去了,心里也不会严重失衡。剩下的0.618就是自己对家人、朋友、事业、社会的付出,只有在这样的付出里,自己才感到生活的充实,并且这种不刻
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部队四百米障碍课件
- 四甲基吡嗪纳米封装技术对活性成分稳定性的提升边界研究
- 叶片制造中的微裂纹缺陷对磁悬浮压缩机转子动态平衡的长期影响研究
- 变频控制算法优化与电机电磁噪声的耦合作用机制
- 压接质量大数据平台与供应链协同的区块链存证技术融合实践
- 医疗旅游行业口腔包的跨区域法规适配与质量追溯机制
- 区域经济差异背景下滤网更换成本分摊机制探索
- 区块链技术在电池防盗溯源中的应用可行性研究
- 动态响应精度与信号失真抑制的协同优化模型构建
- 2024年灌封胶项目项目投资需求报告代可行性研究报告
- 第二单元混合运算单元测试卷(含答案) 2025-2026学年人教版三年级数学上册
- 2025年中央一号文件客观题及参考答案
- 出境人员行前安全培训课件
- 短视频个人劳务合同范本
- 纯电动汽车维护与保养 课件 模块一新能源汽车维护与保养基础认知
- 苏教版三年级上册数学全册教学设计(配2025年秋新版教材)
- 《心系国防 强国有我》 课件-2024-2025学年高一上学期开学第一课国防教育主题班会
- 食管癌颈部吻合ppt课件
- 脐针临床实战解析(案例分析)精品医学讲座课件(210页PPT)
- 陶瓷管项目可行性研究报告写作范文
- 【人教版】数学四年级上册:31《线段、直线、射线和角》课件
评论
0/150
提交评论