




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3.1柱体、锥体、台体的表面积和体积,1,在初中已经学过正方体和长方体的表面积,你知道正方体和长方体的展开图的面积与其表面积的关系吗?,几何体表面积,多面体的展开图和表面积,2,多面体的平面展开图,多面体是由一些平面多边形围成的几何体,沿着多面体的某些棱将它剪开,各个面就可展开在一个平面内,得到一个平面图形,这个平面图形叫做该多面体的平面展开图.,3,探究,棱柱、棱锥、棱台也是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?,4,5,正六棱柱的侧面展开图是什么?如何计算它的表面积?,棱柱的展开图,正棱柱的侧面展开图,6,正五棱锥的侧面展开图是什么?如何计算它的表面积?,棱锥的展开图,侧面展开,正棱锥的侧面展开图,7,正四棱台的侧面展开图是什么?如何计算它的表面积?,棱锥的展开图,侧面展开,正棱台的侧面展开图,8,棱柱、棱锥、棱台的表面积,棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和,9,棱柱的侧面展开图是由平行四边形组成的平面图形,棱锥的侧面展开图是由三角形组成的平面图形,棱台的侧面展开图是由梯形组成的平面图形。这样,求它们的表面积的问题就可转化为求平行四边形、三角形、梯形的面积问题。,10,D,11,1已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积,分析:四面体的展开图是由四个全等的正三角形组成,因此只要求.,因为SB=a,,所以:,因此,四面体S-ABC的表面积,交BC于点D,解:先求的面积,过点S作,典型例题,12,圆柱的表面积,圆柱的侧面展开图是矩形,13,圆锥的表面积,圆锥的侧面展开图是扇形,14,圆台的表面积,参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么,圆台的侧面展开图是扇环,15,三者之间关系,圆柱、圆锥、圆台三者的表面积公式之间有什么关系?这种关系是巧合还是存在必然联系?,16,17,2如图,一个圆台形花盆盆口直径20cm,盆底直径为15cm,底部渗水圆孔直径为1.5cm,盆壁长15cm那么花盆的表面积约是多少平方厘米(取3.14,结果精确到1)?,解:由圆台的表面积公式得花盆的表面积:,答:花盆的表面积约是999,典型例题,18,蜜蜂爬行的最短路线问题.,易拉罐的底面直径为8cm,高25cm.,分析:可以把圆柱沿开始时蜜蜂所在位置的母线展开,将问题转化为平面几何的问题.,A,19,柱体、锥体、台体的表面积,知识小结,圆台,圆柱,圆锥,20,练习,1.若一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比是(),A.,B.,C.,D.,A,2.已知圆锥的全面积是底面积的3倍,那么这个圆锥的侧面积展开图-扇形的圆心角为_度,180,21,情景设置取一些书堆放在桌面上(如图所示),并改变它们的放置方法,观察改变前后的体积是否发生变化?,从以上事实中你得到什么启发?,22,祖暅原理,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,问题:两个底面积相等、高也相等的柱体的体积如何?,23,4.柱体、锥体、台体的体积,S,S,S,棱柱(圆柱)可由多边形(圆)沿某一方向得到,因此,两个底面积相等、高也相等的棱柱(圆柱)应该具有相等的体积,V柱体=sh,柱体,24,柱体、锥体、台体的体积,正方体、长方体,以及圆柱的体积公式可以统一为:,V=Sh(S为底面面积,h为高),一般棱柱的体积公式也是V=Sh,其中S为底面面积,h为高。,棱锥的体积公式也是,其中S为底面面积,h为高。即它是同底同高的圆柱的体积的。,25,锥体,由此可知,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是等于底面面积乘高的,26,探究,探究棱锥与同底等高的棱柱体积之间的关系?,圆台(棱台)的体积公式:,其是S,S分别为上底面面积,h为圆台(棱台)高。,27,台体,28,柱体、锥体、台体的体积公式之间有什么关系?,29,30,解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即:,答:这堆螺帽大约有252个,有一堆规格相同的铁制(铁的密度是)六角螺帽共重5.8kg,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个(取3.14,可用计算器)?,例题,31,柱体、锥体、台体的体积,小结,32,练习:已知一正四棱台的上底边长为4c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安全员模拟测试题及答案模拟模拟练习
- 2025年人口与发展硕士研究生入学考试试题及答案解析
- 2025年农业经济管理师资格考试试题及答案解析
- 2025年景观艺术设计师资格考试试题及答案解析
- 2025年政府文宣岗笔试冲刺题
- 2025年政府会计准则制度实施能力考试高频题解析
- 2025年建筑施工管理师技术考查试题及答案解析
- 2025年建筑工地安全题解
- 2025年家政服务技能考试试题及答案解析
- 课件中插入密码小程序
- 行政法与行政诉讼法案例教程 课件全套 殷兴东 第1-8章 行政法的基本原理-行政赔偿
- 高中新班主任培训
- 新媒体运营与推广- 课程标准、授课计划
- 肝脏中医知识讲座
- 粉尘清扫记录-带说明
- 可视喉镜培训课件
- 《怎样听课评课》课件
- DB64+1841-2022+养老机构分级护理服务规范
- 《茶文化与茶健康》第一讲
- OBE理念下的小学音乐教学设计反向思路初探
- GB 24541-2022手部防护机械危害防护手套
评论
0/150
提交评论