希尔伯特变换与相关分析第5-6课ppt课件.ppt_第1页
希尔伯特变换与相关分析第5-6课ppt课件.ppt_第2页
希尔伯特变换与相关分析第5-6课ppt课件.ppt_第3页
希尔伯特变换与相关分析第5-6课ppt课件.ppt_第4页
希尔伯特变换与相关分析第5-6课ppt课件.ppt_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3Hilbert变换,1,1.求的傅立叶变换,2.求卷积,其中:,例题:,2,一.希尔伯特变换,HT是将信号相移90度的运算,与其它变换不同是属于相同域的变换,时域到时域变化.,其中:,3,将信号通过系统,响应为:,其中:,4,希尔伯特逆变换:,运用时域卷积定理:,二次逆变换:,5,例题1:求的希尔伯特变换,其中:,解:用三种方法求解此题,方法1:,方法2:,方法3:,6,表一:常见希尔伯特变换对,其中:,7,练习:求如下信号的HT,解:,其中:,8,二、HT的特性许多特性都是基于相位移动和卷积性质,其中:,实函数的卷积为实函数,实函数的HT为实函数为奇函数,偶信号的HT为奇信号,偶信号的HT为奇信号,3.的FT的幅度谱为1,信号的幅度频谱与HT的幅度谱相同,9,4.正交、卷积特性,其中:,例题:证明的HT变换为,10,5.尺度变换特性,其中:,的HT,的HT为,6.反折特性,11,三、HT的典型应用,系统因果性(可实现性)的限制系统具有可实现性的前提是因果性。对于因果系统来说,频率响应的实部与虚部,模与幅角都有一定相互制约的特性,这种特性以HT的形式表现出来。因果系统,12,推导:根据时域相乘特性,13,此二式为希尔伯特变换对,说明:因果系统的频率响应其实部被已知的虚部x()唯一确定,反之一样。这一重要特性可适用于任意因果信号,其傅立叶变换的实部与虚部都构成希尔伯特变换对。,与构成HT对,14,例2:已知,求,并验证上述关系。,同样可验证,15,2.因果系统(信号)模与相位函数之间也满足一定的约束关系,可以证明:对于最小相移系统,与之间也存在一定的约束关系(构成一个变换对)。,例3.已知因果LTI系统频响特性H(jw)的实部为R(w)=,求该系统的频响特性和冲激响应h(t)。,16,的解析信号为其中:,3.解析信号,实信号的解析信号定义为,这样可将一个实信号构成一个复信号.,具有虚部是实部的Hilbert变换的一类复信号称为其实部信号的解析信号。,17,解析信号和原信号之间的频谱关系:,所以:,18,解析信号的傅立叶变换总具有因果性:,例:求如下信号的解析信号,解:,因为本项有两项频率项,其解析信号就是略去负频率项,19,注意:(1)给定一个实信号,尽管通过Hilbert可以构成一个解析信号,且是唯一的,但并不是每一个解析信号都有明确的物理意义,(2)只有当,两部分的频谱完全分开时才有意义,(3)的解析信号,只有当A(t)的频谱,两者之间没有重叠时,信号和解析信号构成正交分量,20,需要将幅度信号与相位信号检测出来.,4.Hilbert变换在通信中的应用,随着通信技术的飞速发展,通信体制的变化也日新月异。常用的模拟调制方式主要有AM、FM、SSB等,数字信号通信方式却非常多,如ASK、FSK、MSK、GMSK、PSK、DPSK、QPSK、QAM等。如果按照常规,解调每一种信号就需要一个硬件电路,一个模块,那么要能解调几种、十几种通信信号,其电路就会极其复杂,体积重量都会很大。在目前通信的发展中采用通用硬件平台,利用软件实现不同功能的软件无线电在近几年取得了引人注目的进展。,21,通过Hilbert变换对已调信号进行解调已调信号:,调频和调相:,先构成的解析信号,当带限则,调幅信号:,对乘以,这样就将幅度信号与相位信号检测出来.,22,窄带信号的检测,希尔伯特变换测量功率:希尔伯特变换能将各次谐波电压分别平移,不受频带宽度限制,将电压电流和各次谐波分别移,正交分解用分解系数可求出电压及电流有效值有功和无功功率,5、解析信号其他应用,希尔伯特变换统一地描述各种模拟调制方式(DSB,SSB,AM,FM)的原理,揭示这些方式的内在联系并简化理论分析。,解析信号的另一个很重要的应用:实现对瞬时频率的估计,23,2.4信号的相关分析,24,一.信号的相关分析,相关是时域中描述信号特征的一种重要方法。相关的概念通常在研究随机信号的统计特性而引入。研究两个信号在时移中的相关性,背景是信号与由于某种原因产生了时差,如雷达接收到的两个不同距离目标的反射信号。从数学本质上看,相关函数是信号矢量空间内积与范数特征的具体表现,从物理本质上看相关与信号能量特征有密切联系。相关运算与卷积运算具有某种关系。,其中:,25,1.相关函数的定义,如果与是能量有限信号,则他们的相关函数的定义为:,其中:,相关函数是两个信号时差的函数。,、称为互相关函数,26,自相关函数,当、为实信号时,其中:,27,x与y次序不能颠倒,可见,实信号的相关函数是时移的偶函数。如果是功率信号,相关函数的定义为,其中:,28,2.相关系数,29,结论,1当,即波形相同,幅度不同,;当,即波形相同,幅度不同,;当,误差为零,信号和相关性最强。2当时,和,和线性无关,且此时正交。3恒有成立。4当和为实信号时,为实数。,30,二.相关与卷积的比较,为了方便比较,把中、互换,可见,卷积和相关两种运算都包含位移、相乘、积分三个步骤,不同的是卷积运算需要对反折,而相关运算不需要反折。若x(t)或y(t)为实偶函数,则卷积与相关完全相同,31,三.相关定理,证明:,=,=,=,=,32,其中:,说明:两信号互相关函数的傅立叶变换等于其中一个信号的傅立叶变换乘另一个信号傅立叶变换的共轭。自相关函数与幅度谱的平方是一对傅立叶变换。若x或y是实偶信号,则相关定理与卷积性质相同。,其中:,称为信号能量密度谱。自相关函数与的能量密度谱成一个傅立叶变换对。,33,四.能量谱与自相关函数,(Parseval)帕塞瓦尔公式,34,功率谱与自相关函数,是周期信号的傅立叶变换,若是功率有限信号,其平均功率,称为的功率谱。,相关定理:功率有限信号的功率谱函数与自相关函数构成一对傅立叶变换,35,例1:求周期余弦信号的自相关函数。,其中:,解:,可见,周期信号的自相关函数仍是周期函数,且周期相同。,两周期信号(周期相等)的互相关函数仍然是同频率的周期信号,且保留了原信号的相位信息,36,周期信号的自相关函数是与信号同频率的周期信号,但不具有原信号的相位信息。,其中:,37,白噪声是一种典型的随机信号,对所有的频率其功率谱密度为常数,其中:,则白噪声的自相关函数,表明:白噪声在各时刻的取值杂乱无章,没有任何相关性。时,均为零值。白噪声是一种理想化模型,电阻中电子的随机热运动产生的电阻热噪声与白噪声的模型非常接近,通常认为电阻热噪声就为白噪声。,38,五.离散时间信号的相关分析,其中:,自相关函数,反映了信号和自身延迟之后的的相似程度。,零点值为自身的能量。,39,如果是周期信号(功率信号):,周期信号的自相关函数也是周期函数,且和原信号同周期。无限多个周期信号的求和平均,可以用一个周期信号的求和平均来代替。,40,其中:,自相关函数的性质:,实信号的自相关函数为实偶信号;在原点取得最大值;信号相对自身移至无穷远时,二者已无相关性;周期信号的自相关信号也是周期信号,不收敛.,41,互相关函数,其中:,两个能量有限的确定性信号,主要性质:,42,六.应用,其中:,两个信号或信号自身之间的相互关系,广泛应用于各种信号的处理和检测,如通信、雷达、声纳等领域,应用于系统分析、图象处理等,相关性检测的本质是测量2个信号的相似性,测量2个信号的互相关性,应用于如时间差测量,距离测量,信号识别等,电路模型如图所示。,43,应用1:从含噪信号中检测有用信号,其中:,s(n)是可能的有用信号,并有先验知识,为判断x(n)与s(n)互相关,因为信号和噪声是不相关的,设一个随机信号含有加性的噪声,根据大小可判断x(n)中是否含有s(n)。,44,应用2:匹配滤波器,匹配滤波器:使滤波器的性能和信号的特性取得某种一致,使滤波器的信号瞬时功率与噪声平均功率之比最大.,匹配滤波器的输出为信号的自相关函数,45,a)信号(b)匹配滤波器时的(c)匹配滤波器时的,输出信号的最大值出现在T时刻,46,输出信号的信噪比在某一特定时刻达到最大,对于一个物理可实现的匹配滤波器,其输入信号,必须在它输出最大信噪比的时刻之前结束,47,应用3:距离测量,声音源发出声波,被拾音器L和拾音器R获得,通过乘法器和积分器后得到相关函数Rxy(),改变延迟,可测得相关性函数出现峰值点0。0*音速得到拾音器L与R之间的距离差,48,应用4:图像匹配,图像匹配是对不同时间、不同视角或不同传感器拍摄的两幅或多福图像进行空间变换处理,使得各个图像在几何上能够匹配起来。图像配准的目的是取出待配准图像和参考图像之间在几何上的不一致,包括平移、旋转和形变,使得同一目标在不同图像上具有相同的坐标位置。,利用相关函数和相位相关进行图像匹配,利用相关函数和相位相关可以较准确的求出图像的平移、缩放和旋转量,算法的准确性与图像的相似信息有关,相似信息越多,匹配越准确。,49,对于一个模板T和图像f,则二维归一化的互相关函数,50,互相关法求位移,如果T对f有(i,j)的平移,那么上式就在C(i,j)处达到最大值。,对偏移图像进行配准的一种有效方法是相位相关法。相位相关法是基于傅立叶变换的平移定理,51,考虑两幅图像和间存在(dx,xy)的平移,即:进行傅立叶变换,频域具有以下形式:,说明,两幅有平移量的图像变换到频域中有相同的幅值,但有一个相位差,而这个相位差与图像间的平移量(dx,dy)有直接关系。,52,根据平移特性,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论