




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 john-cook材料本构模型式中,等效塑性应变;s-1的无量纲塑性比,;相对温度,a屈服应力,pa;b应变硬化系数,pa;n应变硬化指数;c应变率相关系数;m温度相关系数。表达式的第一项表示对于和(等温状态)时的应力与应变的函数关系;表达式的第二项和第三项分别表示应变和率温度的影响。表 johnson和cook给出的值材料硬度(洛氏)密度g/cm3比热j/kg.k熔温kampabmpancm高导无氧铜f-308.93831356902920.310.0251.09药筒黄铜f-678.5238511891125050.420.0091.68镍200f-798.944617261636480.330.0061.44工业纯铁f-727.8945218111753800.320.0600.55卡彭特电工钢f-837.8945218112903390.400.0550.551006钢f-947.8945218113502750.360.0221.002024-t351铝b-752.778757752654260.340.0151.007039铝b-762.778758773373430.410.0101.004340钢c-307.8347717937925100.260.0141.03s-7钢c-507.75477176315394770.180.0121.00钨合金0.07ni 0.03fec-4717.0134172315061700.120.0161.00du-75tic-4518.64471473107911200.250.0071.00韩永要弹道学报第16卷第2期re/gpama/mpab/mpacnmtmelt/ktroom/k93w17.63500.28415061770.0080.121.01450294603钢7.852100.2207921800.0160.121.01520294(断裂破坏时的)应变其中,d1、d2、d3、d4、d5输入参数,s*是压力与有效应力之比,。当破坏参数达到1时,发生破坏。* hirofumi iyama, kousei takahashi, takeshi hinata, shigeru itohnumerical simulation of aluminum alloy forming using underwater shock wave8th international ls-dyna users conferencere/gpama/mpab/mpacnmtmelt/ktroom/ka70393373430.010.411.002 steinberg-guinan材料本构模型定义材料熔化前的剪切模量p压力,v相对体积,ec冷压缩能,em熔化能,r气体常数,a原子量屈服强度如果em超过ei,初始塑性应变,当超过,设置等于。材料熔化之后,和g设置为初始值的一半。$ ofhc为高导无氧铜,聚能装药药型罩常用材料*mat_steinberg$ mid r0 g0 sigo beta n gama sigm2 8.93 0.477 0.120e-02 36.0 0.450 0.00 0.640e-02$ b bp h f a tmo gamo sa2.83 2.83 0.377e-03 0.100e-02 63.5 0.179e+04 2.02 1.50$ pc spall rp flag mmn mmx eco ec1-9.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00$ ec2 ec3 ec4 ec5 ec6 ec7 ec8 ec90.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 *eos_gruneisen$ eosid c s1 s2 s3 gamao a e02 0.394 1.49 0.00 0.00 2.02 0.470 0.00 $ v01.00m.katayama, s.kibe, t.yamamotonumerical and experimental study on the shaped charge for space debris assessmentacta astronauttca vol.48,no.5-12,pp.363-372,2001/gpa/gpa/gpa/mpa.k-1emaxaluminum27.10.040.484000.271.767-16.692.608e-31.0copper47.70.120.64360.451.35-17.983.396e-31.0w.h.lee, j.w.paintermaterial void-opening computation using particle methodinternational journal of impact engineering 22(1999)1-22二阶状态方程剪切模量g与流体应力y间的本构关系,系数tungstenaluminumsteeltungsten-copper alloy二阶状态方程a121.674191.18674664.95783232.4562457a214.933380.7629953.68837264.6163216b010.1958273.44476547.47273614.3432909b112.2632341.545057311.5191480.76214541b29.30515150.964296325.52511386.4410793c00.333884370.433816560.394926130.31988993c10.482488610.548734620.528834120.46744784d07.01.53.62.2r019.172.8067.918.983本构关系g01.60.2760.4770.844ya0.0220.00290.00120.0012b7.7125.03616000n0.130.10.450.26ymax0.040.00680.00640.0168b1.3757.9713.14465414.739h-0.0001375-0.0067159-0.000377358-0.0008056q1.01.01.01.0f0.0010.0010.0010.001g0.0010.0010.0010.001r0.0000086710.0000083260.00011640.00000663tme45201220.017901710g0-a0.270.490.520.92a1.41.71.51.53 mie-gruneisen状态方程定义压缩材料的压力为定义膨胀材料的压力为其中:c为us-up曲线的截距,体积声速s1、s2、s3是us-up曲线斜率的系数,是gruneisen 常数,a是的一阶体积修正。ccm/uss1s2s3g0ae出处铜0.3941.492.020.47水0.16471.921-0.0960.00.352.895e-60.1651.920.1(3)australia0.1491.791.652.895e-6(1)日本0.1482.56-1.9860.22680.502.895e-60.14891.791.65(4) 日本0.1481.791.65(5) 日本0.14841.790.113.0钨0.3991.241.54铁0.45691.492.170.464340钢0.45781.331.670.43steel(ss400)0.4581.491.93(5)aluminum0.53861.3391.97(2)日本polyrubber 8.54000e-021.86500e+00(1)hirofumi iyama, kousei takahashi, takeshi hinata, shigeru itohnumerical simulation of aluminum alloy forming using underwater shock wave8th international ls-dyna users conference(2)m. katayama, s. kibe, t. yamamotonumerical and experimental study on the shaped charge for space debris assessmentacta astronauttca vol.48,no.5-12,pp.363-372,2001(3)jingping lu, helen dorsett, david l. kennedysimulation of aquarium tests for pbxw-115(aust)(4)s. itoh, h. hamashimadetermination of jwl parameters from underwater explosion test(5)katsuhiko takahashi, kenji murata, akio torii, yukio katoenhancement of underwater shock wave by metal confinement4 多线性多项式状态方程压力由下式定义其中,如果,则设置,。当设置,时,就可以用于符合律状态方程的气体,其中为比热系数。c0c1c2c3c4c5c6e0v0空气0.00.00.00.00.40.40.02.5e-65 空白材料在仿真计算中,水介质的材料模型可以选用空白材料(null),通过此材料来避免计算应力、应变。在ls-dyna中为材料模型9。空白材料模型必须使用状态方程。6 炸药的材料模型在ls-dyna中,炸药的材料模型一般都选用材料类型8,即mat_high_explosive_burn。需要定义的参数有,密度、爆速与c-j爆轰压力等。此种材料类型必须与状态方程一块使用。7 jwl状态方程炸药爆轰产物的状态方程常采用jwl方程。此状态方程通常用于描述高能炸药及爆轰产物,其形式为r/g.cm-3爆速/ms-1a/gpab/gpar1r2ve/gjm-3爆压/gpa文章sep炸药1.313652.314.301.100.2815.9(1)tnt1.636930373.83.7474.150.90.359.6021(2)371.23.234.150.950.30(3)tnt371.23.234.150.950.30(4)1.658300611.310.654.41.20.328.9(5)pbx95011.8488008.54450.204934.61.350.250.05543(6)pe4booster1.597900774.0548.6774.8371.0740.849.38124.0(7)sep1.3169703723.484.591.060.29(8)(1) hirofumi iyama, kousei takahashi, takeshi hinata, shigeru itohnumerical simulation of aluminum alloy forming using underwater shock wave8th international ls-dyna users conference(2)m.katayama, s.kibe, t.yamamotonumerical and experimental study on the shaped charge for space debris assessmentacta astronauttca vol.48,no.5-12,pp.363-372,2001(3)m.katayama, s.kibenumerical study of the conical shaped charge for space debris impactinternational journal of impact engineering 26(2001) 357-368(4)mark z. vulitsky, zvi h. karniship structures subject to high explosive detonation7th international ls-dyna users conference(5)金乾坤等3d numerical simulations of penetration of oil-well perforator into concrete targets7th international ls-dyna users conference(6)w.h.lee, j.w.paintermaterial void-opening computation using particle methodinternational journal of impact engineering 22(1999)1-22(7)jingping lu, helen dorsett, david l.kennedysimulation of aquarium tests for pbxw-115(aust)(8)s. itoh, h. hamashimadetermination of jwl parameters from underwater explosion test表 jwl状态方程参数炸药c-j参数jwl状态方程参数密度g/cm3gpamm/sgpam3/m3gpagpagpa分子hmxhnspetn特屈儿tnttnt基b炸药acyclotol 77/23h-6octol 78/22pentolite压装炸药a-3其它典型炸药c-4注装pbxpbxn-106pbxn-109 pbxn-110pbxn-114pbxn-115压装pbxlx-10-1lx-14-0pbxn-5b1.8911.0001.4001.6501.2601.5001.7701.7301.6301.7171.7541.7601.8211.7001.6501.6501.6011.6341.6601.6721.7111.7821.8651.83542.07.514.421.514.022.033.528.521.029.532.024.034.225.523.530.028.026.022.027.526.012.037.537.09.115.106.347.036.547.458.307.916.937.988.257.478.487.537.368.308.197.847.608.338.155.708.848.8010.504.106.007.457.198.5610.108.207.008.509.2010.309.608.108.008.909.008.2010.208.709.506.0010.5010.202.7402.4682.8812.8042.8312.7882.642.7982.7272.7062.7313.0922.832.782.782.792.8383.23.3713.819.8682.841778.3162.7366.5463.1573.1625.3617.0586.8371.2524.2603.4758.1748.6540.9531.8611.3609.8570.21341950.41122813.0880.7826.17.07110.826.758.87320.1623.2916.9310.673.2317.6789.9248.51313.389.3738.93310.6512.956.1332.710.988.648-13518.3617.240.6430.6581.1631.3491.2671.1520.6990.7741.0451.0821.0751.1431.1671.0330.9761.081.0431.3251.3341.81615.83.4241.2961.2964.205.404.804.556.005.254.404.404.154.24.34.94.54.54.64.44.54.456.005.005.205.004.625.551.001.801.401.351.801.601.201.200.951.11.11.11.21.11.051.21.41.02.01.41.23.51.321.320.300.250.320.350.280.280.250.280.300.340.350.20.380.350.330320.250.380.20.40.30.60.380.38a. b炸药的改进型,rdx/tnt/石蜡 = 64/36/1b. 见lx-10-1炸药的各值,它们是类似的混合炸药james l. odaniel, theodor krauthammer, kevin l. koudelaan undex response validation methodologyinternational journal of impact engineering 27(2002) 919-937effective orthotropic composite material propertiesrexxeyyezzmxymyzmxzgxygyzgxzg/cm3gpagpagpagpagpagpatop_l1.9420.3920.3910.740.285850.241830.241837.9293.9033.903all30_s1.9415.559.84510.130.423380.196220.259566.1343.8433.843mid_l1.9420.5616.9010.670.348390.218590.245338.1013.8843.922$铝 *mat_johnson_cook 2 2.77 0.276 3.37e-03 3.43e-03 0.410 0.100e-01 1.00 0.877e+03 300. 0.100e-05 0.875e-05 -9.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 *eos_gruneisen 2 0.5328 1.338 0.00 0.00 2.00 0.00 0.00 0.00 $金属-铜*mat_johnson_cook 1 8.96 0.478 1.28 0.340000 0.000000 0.900e-03 0.292e-02 0.310 0.250e-01 1.09 0.136e+04 294. 0.100e-05 0.383e-05 -9.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 *eos_gruneisen 1 0.394 1.49 0.00 0.00 2.02 0.470 0.00 0.00 $炸药*mat_high_explosive_burn 2 1.7870001 0.8390000 0.3400000 0.0000000 0.0000000 0.0000000 0.0000000*eos_jwl 2 5.8140002 6.8010e-2 4.1000000 1.0000000 0.3500000 0.0900000 1.0000000$空气*mat_null 3 1.2250e-3 0.0 17.456e-6 0.0 0.0 0.0 0.0*eos_linear_polynomial 3 0.0 0.0 0.0 0.0 0.40 0.4 0.0 2.5e-6 1.0$水*mat_null 4 1.0 -1.00e-4 1e-6 0.0000000 0.0000000 0.0000000 0.0000000*eos_gruneisen 4 .14840 1.7900000 .0000000 .0000000 0.110000 3.0000000 .0000000 1.0$ material definitions $*mat_high_explosive_burn 2 1.7870001 0.8390000 0.3400000 0.0000000 0.0000000 0.0000000 0.0000000*eos_jwl 2 5.8140002 6.8010e-2 4.1000000 1.0000000 0.3500000 0.0900000 1.0000000*initial_detonation 2 0.0000000 0.0000000 0.0000000 0.0000000*mat_null 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000$水*mat_010 7 1.000e+00 0.2e-2 0.0 0.000 0.000e-00 2.00 *eos_gruneisen$水$ eosid c s1 s2 s3 gama0 a e0 6 0.1480 1.79 0 0.0000 1.65 0.0 2.895e-6$ v0 1.0*eos_gruneisen$水$ eosid c s1 s2 s3 gama0 a e0 15 0.1647 1.921 -0.096 0.0000 0.35 0.0 2.895e-6$ v0 1.0*eos_gruneisen$水$ eosid c s1 s2 s3 gama0 a e0 1 0.1480 2.56 -1.986 0.2268 0.50 0.0 2.895e-6$ v0 1.0$*mat_johnson_cook$钨合金 9 17.6 1.36 3.50 0.286 0.000000 1.806e-02 0.177e-02 0.120 1.600e-02 1.00 1.723e+03 294. 0.100e-05 0.134e-05 -9.0 2.00 0.00 2.00 0.00 0.00 0.00 0.00 $*eos_gruneisen$钨合金 9 0.399 1.24 0.00 0.00 1.54 0.00 0.00 0.00 $*mat_plastic_kinematic$树脂 8 1.19 0.780e-01 0.000000 0.800e-03 0.00 1.00 0.00 0.00 2.00 $*mat_plastic_kinematic$钨合金$ mid ro e pr sigy etan beta 6 1.862e+01 1.170e+00 0.22 1.790e-02 1.0$ src srp fs 0.8$空气*mat_null 4 1.280e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00*eos_linear_polynomial 4 0.000e-00 1.000e-05 0.000e+00 0.000e+00 0.400 0.400 0.000e+00 0.000e+00 0.000e+00$ *mat_johnson_cook $铁 5 7.83000 0.77 7.920e-03 5.10e-03 0.260 0.140e-01 1.03 0.1793e+04 294 0.100e-05 0.477e-05 -9.00e+0 3.00 0.0 0.80 0.00 0.00 0.00 0.00 *eos_gruneisen $铁 5 0.4569 1.490 0.00 0.00 2.17 0.46 0.00 1.00 $金属-铜*mat_johnson_cook 3 8.96 0.478 1.28 0.340000 0.000000 0.900e-03 0.292e-02 0.310 0.250e-01 1.09 0.136e+04 294. 0.100e-05 0.383e-05 -9.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 $金属-铜*eos_gruneisen 3 0.394 1.49 0.00 0.00 2.02 0.470 0.00 0.00 $define steel 4340 *mat_johnson_cook 1, 7.8400e+00, 0.759e-00, 2.000e+00, 0.320e+00, 0.000e+00 0.793e-02, 0.510e-02, 2.60e-01, 1.400e-02, 1.030e+00, 1.793e+03, 2.930e+02, 1.000e-05 4.400e-06, 2.000e-02, 2.000e+00, 0.000e+00, 0.80e+00, 2.100e+00, -0.05e+00, 2.000e-03 0.610e+00 *eos_gruneisen 1, 4.578e-01, 1.330e+00, 0.000e+00, 0.000e+00, 1.670e+00, 0.430e+00, 0.000e+00 1.000e+00 $ si unit :cm-g-microsecond $ unit conversion factor $ 1 psi=6895 pa, 1 dyn=1e-5 n,1 bar=1e5 pa,1 g/cm*3=0.0361 lb/in*3,1 lb=0.454kg 本参数援引university of nevada las vegas。 *mat_johnson_cook 2,8.33,0.51,1.38,0.358.963e-4, 2.9163e-3, 0.31,0.025,1.09,1220,293,1e-54.4e-6,2.4e-3,2.0,0,-0.54,4.89,-3.03,0.0141.12*eos_gruneisen 2,0.394,1.489,0,0,2.02,0.471.0*mat_johnson_cookmidro密度g剪切模量e杨氏模量pr泊松系数dtfvp4340steel7.840.7592.00.32ofhc copper8.331.380.35abncmtm熔化温度tr室温epso应变率系数4340steel0.793e-20.51e-20.260.0141.0317932931e-5ofhc copper8.963e-42.9163e-30.310.0251.0912202931e-5cp比热pc失效应力spallitd1d2d3d44340steel4.4e-60.022.000.82.1-0.050.002ofhc copper4.4e-62.4e-3-0.544.89-3.030.014d54340steel0.61ofhc copper1.12*eos_gruneisene0sidcs1s2s3gamaoae04340steel0.45781.331.670.43ofhc copper0.3941.4892.020.47v04340steel1.0ofhc copper1.0ofhc copper 参数援引ansys help johnson_cook material model单位:国际单位制ofhc copper ansys部分数据来自帮助文件autodyna and ls-dyna 中john-cook模型参数的对应关系reference temper -trspecific heat-cpshear modus-gyield stress-aharding constant-bharding exponent-nstrain rate constant-cthermal softening exponent-mmelting temperature-tmgruneisenparameter c1-cparameter s1-s1gruneisen coefficient-gamaomidrogeprdtfvp含义denistyshear modulusyoungs moduluspoissons rate类型iffffff缺省值nonenonenonenonenone0.00.0ansys8330138e0.35abncmtmtreps0含义meltroom类型ffffffff缺省值none0.00.00.0nonenonenonenoneansys89.83e6291.64e60.310.0251.0912003010cppcspallitd1d2d3d4含义specific heatfailure stress类型fffffff缺省值none0.02.00.00.00.00.00.0ansys4400240e6-0.544.89-3.030.014d5含义类型f缺省值0.0ansys1.12*mat_soil_and_foam_failure $土壤: 2 1.800e+00 6.400e-04 3.000e-01 3.410e-13 7.030e-07 0.3000000 -6.90e-08 0.000 -1.04e-01 -1.61e-01 -1.91e-01 -2.24e-01 -2.46e-01 -2.71e-01 -2.83e-01 -2.90e-01 -4.00e-01 0 2.000e-04 4.000e-04 6.000e-04 1.200e-03 2.000e-03 4.000e-03 6.000e-03 8.000e-03 4.100e-02 *mat_high_explosive_burn $b炸药 1 1.7170000 0.7980000 0.2950000 0.0000000 0.0000000 0.0000000 0.0000000 *eos_jwl $b炸药 1 5.2420000 7.67800
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030功能性食用油行业深度调研及健康属性与市场教育报告
- 2025-2030功率半导体器件封装测试技术发展趋势报告
- 2025年新能源汽车电池热管理系统成本控制与性能提升报告
- 2025年安全生产知识竞赛必考题库及答案
- 2025-2030年新能源行业投资并购风险管理与应对策略研究报告
- 2025年康复医学康复方案设计模拟试题答案及解析
- 2025年交管12123学法减分考试题大全及参考答案
- 2025年保险行业数字化理赔服务法律法规研究报告
- 智慧城市地热能供暖技术创新2025年市场分析与战略建议报告
- 2025年江苏省泰州市国家公务员行政职业能力测验模拟题(附答案)
- 人教版(新教材)高中生物选择性必修1课件3:4 3 免疫失调
- 《SLT 582-2025水工金属结构制造安装质量检验检测规程》知识培训
- “燕园元培杯”2023-2024学年全国中学生地球科学奥林匹克竞赛决赛试题详解
- 中国血脂管理指南(基层版+2024年)解读
- 分子诊断技术在感染性疾病中的应用-深度研究
- 《智能AI分析深度解读报告》课件
- 气道异物护理教学
- 2024年版机电产品国际招标标准招标文件
- 企业合规经营规范手册
- 企业员工心理健康与欺凌防范政策
- 四川省兴文县建设煤矿2021年矿山储量年报
评论
0/150
提交评论