




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
. . . .双曲线知识点1 双曲线定义:到两个定点F1与F2的距离之差的绝对值等于定长(|F1F2|)的点的轨迹(为常数)这两个定点叫双曲线的焦点要注意两点:(1)距离之差的绝对值.(2)2a|F1F2|,这两点与椭圆的定义有本质的不同.当|MF1|MF2|=2a时,曲线仅表示焦点F2所对应的一支;当|MF1|MF2|=2a时,曲线仅表示焦点F1所对应的一支;当2a=|F1F2|时,轨迹是一直线上以F1、F2为端点向外的两条射线;当2a|F1F2|时,动点轨迹不存在.动点到一定点F的距离与它到一条定直线l的距离之比是常数e(e1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l叫做双曲线的准线2.双曲线的标准方程:和(a0,b0).这里,其中|=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x轴上;如果项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题: 正确判断焦点的位置; 设出标准方程后,运用待定系数法求解.5.曲线的简单几何性质=1(a0,b0)范围:|x|a,yR对称性:关于x、y轴均对称,关于原点中心对称顶点:轴端点A1(a,0),A2(a,0)渐近线:若双曲线方程为渐近线方程若渐近线方程为双曲线可设为若双曲线与有公共渐近线,可设为(,焦点在x轴上,焦点在y轴上)特别地当离心率两渐近线互相垂直,分别为y=,此时双曲线为等轴双曲线,可设为;y=x,y=x准线:l1:x=,l2:x=,两准线之距为焦半径:,(点P在双曲线的右支上);,(点P在双曲线的右支上);当焦点在y轴上时,标准方程及相应性质(略)与双曲线共渐近线的双曲线系方程是与双曲线共焦点的双曲线系方程是6曲线的内外部(1)点在双曲线的内部.(2)点在双曲线的外部.7曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:.(2)若渐近线方程为双曲线可设为.(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,焦点在y轴上).8双曲线的切线方程(1)双曲线上一点处的切线方程是.(2)过双曲线外一点所引两条切线的切点弦方程是.(3)双曲线与直线相切的条件是.9线与椭圆相交的弦长公式 若斜率为k的直线被圆锥曲线所截得的弦为AB, A、B两点分别为A(x1,y1)、B(x2,y2),则弦长 ,这里体现了解析几何“设而不求”的解题思想;高考题型解析题型一:双曲线定义问题1.“ab0,b0,b0)的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若ABE是锐角三角形,则该双曲线的离心率e的取值范围是()A(1,) B(1,2) C(1,1) D(2,1)9.设P为双曲线y21上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是10.求与圆A:(x+5)2+y2=49和圆B:(x5)2+y2=1都外切的圆的圆心P的轨迹方程为_11.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(1)求双曲线C的方程;(2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.12.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0)(1)求双曲线C的方程;(2)若直线:ykxm(k0,m0)与双曲线C交于不同的两点M、N,且线段MN的垂直平分线过点A(0,1),求实数m的取值范围1. 若不给自己设限,则人生中就没有限制你发挥的藩篱。2. 若不是心宽似海,哪有人生风平浪静。在纷杂的尘世里,为自己留下一片纯静的心灵空间,不管是潮起潮落,也不管是阴晴圆缺,你都可以免去浮躁,义无反顾,勇往直前,轻松自如地走好人生路上的每一步3. 花一些时间,总会看清一些事。用一些事情,总会看清一些人。有时候觉得自己像个神经病。既纠结了自己,又打扰了别人。努力过后,才知道许多事情,坚持坚持,就过来了。4. 岁月是无情的,假如你丢给它的是一片空白,它还给你的也是一片空白。岁月是有情的,假如你奉献
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北京市通州区新华街道社区卫生服务中心招聘非在编药学人员考前自测高频考点模拟试题附答案详解(典型题)
- 线上课堂协议样本
- 小学佛山安全教育培训课件
- 2025年微机励磁屏项目发展计划
- 2025年皮手套及皮革制衣着附件项目合作计划书
- 2025安徽六安市中医院紧缺人才招聘考前自测高频考点模拟试题附答案详解(突破训练)
- 2025届中国兵器装备春季校园招聘模拟试卷完整答案详解
- 2025年机组自动化屏项目建议书
- 2025年烟台莱阳市卫生健康局所属事业单位公开招聘工作人员(35人)模拟试卷及1套参考答案详解
- 2025年安阳市新华学校招聘教师4人考前自测高频考点模拟试题及答案详解(必刷)
- LED销售技巧培训
- 《人民调解业务知识》课件
- 2025年上海电力股份有限公司招聘笔试参考题库含答案解析
- 安全生产法律法规汇编(2025版)
- 养老服务合作协议
- 《埃菲尔铁塔唯美》课件
- 依诺肝素钠课件
- 道路交通安全培训课件
- 教材验收合格报告范文
- GB/T 23450-2024建筑隔墙用保温条板
- 2022年海南省中考语文试卷
评论
0/150
提交评论