




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
几个经典数学模型的再认识 1 椅子放稳模型2 存贮模型3 仓库选址模型4 蛛网模型 南通大学理学院林道荣 报告提纲 2008江苏省工业与应用数学学会学术年会分组报告2008年11月15日南通 1 椅子放稳模型 这个问题来自日常生活中一件普通的事实 把椅子往不平的地面一放 通常只有三只脚着地 放不稳 然而只要稍微挪动几次 就可以使四只脚同时着地 放稳了 用数学模型证明为什么能放稳 先假设 1 四条腿一样长 椅脚与地面点接触 四脚连线呈正方形 椅子的四脚连线也可能为矩形 梯形等 为了从最简单的研究起 我们就设其为正方形 2 地面高度连续变化 可视为数学上的连续曲面 椅子是不能在台阶上放稳的 3 地面相对平坦 使椅子在任意位置至少三只脚同时着地 如果地面在小地方中凹凸太厉害 以至于比椅腿的长度更大时 椅子也不能放稳 移动椅子有三种方法 旋转 平移 平移加旋转 其中旋转要设1个变量 平移要2个 平移加旋转要3个 为了方便起见一般采用旋转法 由于 假设1 设椅子的四脚连线为正方形 所以我们可以利用正方形的对称性建立平面直角坐标系 正方形abcd绕o点旋转 用 表示旋转 此时a c两脚与地面距离之和记为f b d两脚与地面距离之和记为g 如果开始旋转时a两脚不着地 则f 0 0 g 0 0 此时问题已经转化为这么一个数学模型 已知 f g 是连续函数 由假设2 对任意 f g 0 且g 0 0 f 0 0 求证 存在 0 使f 0 g 0 0 证明 将椅子旋转900 对角线ac和bd互换 由g 0 0 f 0 0 知f 2 0 g 2 0 令h f g 由f g的连续性知h为 0 2 上的连续函数 而且h 0 0和h 2 0 据连续函数的基本性质 必存在0 0 2 使h 0 0 即f 0 g 0 因为f g 0 所以f 0 g 0 0 问题 四脚成长方形或四脚共圆时 模型还适用吗 因为四脚成长方形或四脚共圆时 将椅子旋转900 对角线ac和bd不能互换 但不能说不适用 注意到正方形是中心对称图形 长方形是轴对称图形 因此对于四脚成长方形情形 注意到椅子旋转1800时对边ab和cd能互换 只要把a b两脚与地面距离之和记为f c d两脚与地面距离之和记为g 就可以了 因为把证明过程中的 2改为 就可以了 显然改进的模型适用四脚成正方形情形 由于一般四边形无对称性 从证明的角度看四脚成长方形包括正方形情形的模型似乎不适用于四脚共圆 四脚与地面距离有4个函数 两对角线分别组合解决四脚成正方形 对边分别组合解决四脚成长方形 有没有其它组合 可以a脚与地面距离为f b c d三脚与地面距离之和为g 把证明过程中的 2或 改为 0 2 就可以了 这时模型适用四脚共圆 当然适用四脚成长方形包括正方形情形 进一步地 四脚共圆的模型就是通用模型 分析证明过程可知这样的证明也适用于四脚成正方形或长方形 即不需将椅子旋转900或将椅子旋转1800证明 因此一般模型这样建立 对于四脚与地面距离有4个函数 a脚或另外最多两个脚与地面距离之和为f 其它脚与地面距离之和为g 椅子旋转 在区间 0 上应用介值定理不难证明 这表明我们对四脚成正方形或长方形的模型适用于其它情形 再认识一 对建立模型过程或模型求解过程分析 找出建模关键而形成通用模型 2 存贮模型 存贮模型是存贮论的基本内容 而存贮论是运筹学的一个重要分支 在生产领域有广泛应用 初等存贮模型分不允许缺货的存贮模型 允许缺货的存贮模型 这里先介绍不允许缺货的存贮模型 一 不允许缺货的存贮模型 问题 配件厂为装配线生产若干种产品 轮换产品时因更换设备要付生产准备费 产量大于需求时要付贮存费 该厂生产能力非常大 即所需数量可在很短时间内产 不允许缺货 模型假设 1 产品每天的需求量为常数r 2 每次生产准备费为c1 每天每件产品贮存费为c2 3 t天生产一次 周期 每次生产q件 当贮存量为零时 q件产品立即到来 生产时间不计 4 为方便起见 时间和产量都作为连续量处理 离散问题连续化处理 建模目的 设r c1 c2已知 求t q使每天总费用的平均值最小 模型建立 贮存量表示为时间的函数q t 显然是以t为周期的函数 t 0生产q件 q 0 q q t 以需求速率r递减 q t 0 由周期性可知要计算总费用只要计算一个周期的总费用 由于准备费为常数 下面的重点是要计算贮存费 注意到q t 是变化的 故计算贮存费需用元素法 定积分 以t为积分变量 0 t 为积分区间 在积分区间取微分区间 t t dt 则贮存费微分为 dc c2q t dt 一个周期的贮存费为 a qt 2 一个周期的总费用为 每天总费用平均值 目标函数 为 于是所求模型为 模型求解 模型求解结果在经济学中称为经济批量订货公式 eoq公式 应用于订货 供应 存贮情形 二 问题 每天总费用的平均值最小为什么要周期地等产量生产 思考问题1 生产的周期性 日需求100件 准备费5000元 贮存费每日每件1元 考虑20天的生产 10天生产一次 每次1000件 贮存费900 800 100 4500元 准备费5000元 总计19000元 每天费用950元 先9天生产一次 这次生产900件 贮存费800 700 100 3600元 准备费5000元 小计8600元 再11天生产一次 这次生产1100件 贮存费1000 900 100 5500元 准备费5000元 小计10500元 总计19100元 平均每天费用955元 先9天生产一次 这次生产1000件 贮存费900 800 100 4500元 准备费5000元 小计9500元 再11天生产一次 这次生产1000件 贮存费1000 900 100 5500元 准备费5000元 小计10500元 总计20000元 平均每天费用1000元 周期性地生产会使平均每天费用减少 思考问题2 生产的等量性 日需求100件 准备费5000元 贮存费每日每件1元 考虑20天的生产 10天生产一次 每次1000件 贮存费900 800 100 4500元 准备费5000元 总计19000元 每天费用950元 先10天生产一次 这次生产1100件 贮存费1000 900 200 5400元 准备费5000元 小计10400元 再10天生产一次 这次生产900件 贮存费900 800 100 4500元 准备费5000元 小计9500元 总计19900元 平均每天费用995元 先11天生产一次 这次生产1100件 贮存费1000 900 200 100 5500元 准备费5000元 小计10500元 再9天生产一次 这次生产900件 贮存费800 700 100 3600元 准备费5000元 小计9500元 总计19100元 平均每天费用955元 等量地生产会使平均每天费用减少 由此可见 必须周期地等量生产 因此有模型 在一段时间nt天内需分n次生产数量为nq的产品 时间间隔依次为t1 t2 tn 相应的各次生产数量依次为q1 q2 qn 若每天需求量r 每次订货费c1 每天每件贮存费c2 则 求解结果为 认识二 对问题仔细分析 找出模型缺陷而完善模型 某地区有n n 2 个商品粮生产基地 各基地的粮食数量分别为m1 m2 mn 单位 吨 每吨粮食一距离单位运费为c 为使各基地到仓库的总运费最小 问仓库如何选址 问题 3 仓库选址 模型假设 1 各商品粮生产基地的粮食集中于一处 2 各商品粮生产基地及仓库看作点 3 各商品粮生产基地与仓库之间道路按直线段考虑 模型建立 建立平面直角坐标系xoy 各商品粮生产基地的坐标分别为 xi yi i 1 2 n 仓库的坐标为 x y 则各商品粮生产基地到仓库的总运费为 于是模型为 模型求解 由 有 对一般n求解方程组 2 有一定困难 但n 2时比较容易求得仓库坐标 自然推测对一般的n 方程组 2 的求解结果为 容易验证 4 满足方程组 2 下面考察 4 式 这一结果可以解释为 平面n个具有质量mi的质点 xi yi i 1 2 n的质心坐标就为 x y 再认识三 分析模型结果 寻找更为简单的模型或其它建模方法 由此可以如下建立模型 把n个分别拥有粮食mi吨的商品粮生产基地类比为n个具有质量mi的质点 xi yi i 1 2 n 则总运费最小的仓库位置就是这n个质点的质心 x y 这是一种建立数学模型的方法 类比法 4 蛛网模型 问题 供大于求 现象 商品数量与价格的振荡在什么条件下趋向稳定 描述商品数量与价格的变化规律 数量与价格在振荡 模型 xk 第k时段商品数量 yk 第k时段商品价格 消费者的需求关系 生产者的供应关系 减函数 增函数 f与g的交点p0 x0 y0 平衡点 一旦xk x0 则yk y0 xk 1 xk 2 x0 yk 1 yk 2 y0 设x1偏离x0 x1 p0是稳定平衡点 p0是不稳定平衡点 曲线斜率 蛛网模型 应用核军备竞赛 冷战时期美苏声称为了保卫自己的安全 实行 核威慑战略 核军备竞赛不断升级 随着前苏联的解体和冷战的结束 双方通过了一系列的核裁军协议 在什么情况下双方的核军备竞赛不会无限扩张 而存在暂时的平衡状态 以双方 战略 核导弹数量描述核军备的大小 假定双方采取如下同样的核威慑战略 认为对方可能发起所谓第一次核打击 即倾其全部核导弹攻击己方的核导弹基地 乙方在经受第一次核打击后 应保存足够的核导弹 给对方重要目标以毁灭性的打击 在任一方实施第一次核打击时 假定一枚核导弹只能攻击对方的一个核导弹基地 摧毁这个基地的可能性是常数 它由一方的攻击精度和另一方的防御能力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 顶账合同协议书范本
- 搭伙养老合同协议书
- 解除认购协议书合同
- 达人合同协议书模板
- 合同协议书常用句式
- 土方转让合同协议书
- 装修合同追回协议书
- 楼房赠予合同协议书
- 合伙修路合同协议书
- 秸秆消纳合同协议书
- 任务一淘米(教学课件)一年级下册劳动技术(人美版)
- 湖北省武汉市2025届高中毕业生四月调研考试语文试卷及答案(武汉四调)
- 4.1.2-元素周期表-课件 高一上学期化学人教版(2019)必修第一册
- 中华人民共和国能源法
- 数学中考复习:一次函数与反比例函数综合课件
- 60kv变电站电气部分设计
- 2022年《科学》新课标《义务教育科学课程标准(2022年版)》全文学习2022年新版义务教育科学课程标准(2022年版)课件
- 煤炭地质勘查的取样工作
- 银行间债券市场非金融企业债务融资工具持有人会议规程
- JJF 1175-2007 试验筛校准规范
- GB∕T 41010-2021 生物降解塑料与制品降解性能及标识要求
评论
0/150
提交评论