




免费预览已结束,剩余14页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
英文翻译下属学院 理工学院 专 业 信息与计算科学 班 级 08信息与计算科学 学 号 2008009010 姓 名 小林子 指导教师 李丽娟 2011 年 11 月 25日Some Properties of Solutions of Periodic Second Order Linear Differential Equations1. Introduction and main resultsIn this paper, we shall assume that the reader is familiar with the fundamental results and the stardard notations of the Nevanlinnas value distribution theory of meromorphic functions 12, 14, 16. In addition, we will use the notation,and to denote respectively the order of growth, the lower order of growth and the exponent of convergence of the zeros of a meromorphic function ,(see 8),the e-type order of f(z), is defined to be Similarly, ,the e-type exponent of convergence of the zeros of meromorphic function , is defined to beWe say thathas regular order of growth if a meromorphic functionsatisfiesWe consider the second order linear differential equationWhere is a periodic entire function with period . The complex oscillation theory of (1.1) was first investigated by Bank and Laine 6. Studies concerning (1.1) have een carried on and various oscillation theorems have been obtained 211, 13, 1719. Whenis rational in ,Bank and Laine 6 proved the following theoremTheorem A Letbe a periodic entire function with period and rational in .Ifhas poles of odd order at both and , then for every solutionof (1.1), Bank 5 generalized this result: The above conclusion still holds if we just suppose that both and are poles of, and at least one is of odd order. In addition, the stronger conclusion (1.2)holds. Whenis transcendental in, Gao 10 proved the following theoremTheorem B Let ,whereis a transcendental entire function with, is an odd positive integer and,Let .Then any non-trivia solution of (1.1) must have. In fact, the stronger conclusion (1.2) holds.An example was given in 10 showing that Theorem B does not hold when is any positive integer. If the order , but is not a positive integer, what can we say? Chiang and Gao 8 obtained the following theoremsTheorem C Let ,where,andare entire functionstranscendental andnot equal to a positive integer or infinity, andarbitrary.(i) Suppose . (a) If f is a non-trivial solution of (1.1) with; thenandare linearly dependent. (b) Ifandare any two linearly independent solutions of (1.1), then .(ii) Suppose (a) If f is a non-trivial solution of (1.1) with,andare linearly dependent. Ifandare any two linearly independent solutions of (1.1),then.Theorem D Letbe a transcendental entire function and its order be not a positive integer or infinity. Let; whereand p is an odd positive integer. Thenor each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2) holds.Examples were also given in 8 showing that Theorem D is no longer valid whenis infinity.The main purpose of this paper is to improve above results in the case whenis transcendental. Specially, we find a condition under which Theorem D still holds in the case when is a positive integer or infinity. We will prove the following results in Section 3.Theorem 1 Let ,where,andare entire functions withtranscendental andnot equal to a positive integer or infinity, andarbitrary. If Some properties of solutions of periodic second order linear differential equations and are two linearly independent solutions of (1.1), thenOrWe remark that the conclusion of Theorem 1 remains valid if we assumeis not equal to a positive integer or infinity, andarbitrary and still assume,In the case whenis transcendental with its lower order not equal to an integer or infinity andis arbitrary, we need only to consider in,.Corollary 1 Let,where,andareentire functions with transcendental and no more than 1/2, and arbitrary.(a) If f is a non-trivial solution of (1.1) with,then and are linearly dependent.(b) Ifandare any two linearly independent solutions of (1.1), then.Theorem 2 Letbe a transcendental entire function and its lower order be no more than 1/2. Let,whereand p is an odd positive integer, then for each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2) holds. We remark that the above conclusion remains valid ifWe note that Theorem 2 generalizes Theorem D whenis a positive integer or infinity but . Combining Theorem D with Theorem 2, we haveCorollary 2 Letbe a transcendental entire function. Let where and p is an odd positive integer. Suppose that either (i) or (ii) below holds:(i) is not a positive integer or infinity;(ii) ;thenfor each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2) holds.2. Lemmas for the proofs of TheoremsLemma 1 (7) Suppose thatand thatare entire functions of period,and that f is a non-trivial solution ofSuppose further that f satisfies; that is non-constant and rational in,and that if,thenare constants. Then there exists an integer q with such that and are linearly dependent. The same conclusion holds ifis transcendental in,and f satisfies,and if ,then asthrough a setof infinite measure, we havefor.Lemma 2 (10) Letbe a periodic entire function with periodand be transcendental in, is transcendental and analytic on.Ifhas a pole of odd order at or(including those which can be changed into this case by varying the period of and. (1.1) has a solutionwhich satisfies , then and are linearly independent.3. Proofs of main resultsThe proof of main results are based on 8 and 15.Proof of Theorem 1 Let us assume.Since and are linearly independent, Lemma 1 implies that and must be linearly dependent. Let,Thensatisfies the differential equation, (2.1)Where is the Wronskian ofand(see 12, p. 5 or 1, p. 354), andor some non-zero constant.Clearly, and are both periodic functions with period,whileis periodic by definition. Hence (2.1) shows thatis also periodic with period .Thus we can find an analytic functionin,so thatSubstituting this expression into (2.1) yields (2.2)Since bothand are analytic in,the Valiron theory 21, p. 15 gives their representations as , (2.3)where,are some integers, andare functions that are analytic and non-vanishing on ,and are entire functions. Following the same arguments as used in 8, we have, (2.4)where.Furthermore, the following properties hold 8,Where (resp, ) is defined to be(resp, ),Some properties of solutions of periodic second order linear differential equationswhere(resp. denotes a counting function that only counts the zeros of in the right-half plane (resp. in the left-half plane), is the exponent of convergence of the zeros of in, which is defined to beRecall the condition ,we obtain.Now substituting (2.3) into (2.2) yields (2.5)Proof of Corollary 1 We can easily deduce Corollary 1 (a) from Theorem 1 .Proof of Corollary 1 (b). Supposeandare linearly independent and,then,and .We deduce from the conclusion of Corollary 1 (a) thatand are linearly dependent, j = 1; 2. Let.Then we can find a non-zero constant such that.Repeating the same arguments as used in Theorem 1 by using the fact that is also periodic, we obtain,a contradiction since .Hence .Proof of Theorem 2 Suppose there exists a non-trivial solution f of (1.1) that satisfies . We deduce , so and are linearly dependent by Corollary 1 (a). However, Lemma 2 implies that andare linearly independent. This is a contradiction. Hence holds for each non-trivial solution f of (1.1). This completes the proof of Theorem 2.Acknowledgments The authors would like to thank the referees for helpful suggestions to improve this paper.References1 ARSCOTT F M. Periodic Dierential Equations M. The Macmillan Co., New York, 1964.2 BAESCH A. On the explicit determination of certain solutions of periodic differential equations of higher order J. Results Math., 1996, 29(1-2): 4255.3 BAESCH A, STEINMETZ N. Exceptional solutions of nth order periodic linear differential equations J.Complex Variables Theory Appl., 1997, 34(1-2): 717.4 BANK S B. On the explicit determination of certain solutions of periodic differential equations J. Complex Variables Theory Appl., 1993, 23(1-2): 101121.5 BANK S B. Three results in the value-distribution theory of solutions of linear differential equations J.Kodai Math. J., 1986, 9(2): 225240.6 BANK S B, LAINE I. Representations of solutions of periodic second order linear differential equations J. J. Reine Angew. Math., 1983, 344: 121.7 BANK S B, LANGLEY J K. Oscillation theorems for higher order linear differential equations with entire periodic coecients J. Comment. Math. Univ. St. Paul., 1992, 41(1): 6585.8 CHIANG Y M, GAO Shian. On a problem in complex oscillation theory of periodic second order lineardifferential equations and some related perturbation results J. Ann. Acad. Sci. Fenn. Math., 2002, 27(2):273290.一些周期性的二阶线性微分方程解的方法1 简介和主要成果在本文中,我们假设读者熟悉的函数的数值分布理论12,14,16的基本成果和数学符号。此外,我们将使用的符号,and ,表示的顺序分别增长,低增长的一个纯函数的零点收敛指数,(8),E型的f(z),被定义为同样,E型的亚纯函数的零点收敛指数,被定义为我们说,如果一个亚纯函数满足增长的正常秩序我们考虑的二阶线性微分方程在是一个整函数在。在(1.1)的反复波动理论的第一次探讨中由银行和莱恩6。已经进行了研究在(1.1)中,并已取得各种波动定理在211,13,1719。在函数中正确的,银行和莱恩6证明了如下定理定理A 设这函数是一个周期性函数,周期为在整个函数存在。如果有奇数阶极点在和,然后对于任何一个结果答案在(1.1)中广义这样的结果:上述结论仍然认为,如果我们只是假设,既和的极点,并且至少有一个是奇数阶。此外,较强的结论 (1.2)认为。当是超越在,高10证明了如下定理定理B设,其中是一个超越整函数与,是奇正整并且,设,那么任何微分解在(1.1)的函数必须有。事实上,在(1.2)已经有证明的结论。是在10 一个例子表明当定理B不成立时,是任意正整数。如果在另一方面,但如果没有一个正整数,我们可以说些什么呢?蒋和高8得到以下定理定理C 设,其中,函数和函数是整函数先验和不等于一个正整数或无穷大,并函数任意。(一) 假设(a)如果函数f是一个非平凡解在(1.1),那么和是线性相关。(b)如果函数和函数在(1.1)是两个线性无关函数,则存在这样一个条件。(二) 假设(a)如果函数f有一个非平凡解在(1.1)且,和是线性相关的。 如果函数和函数在(1.1)在(1.1)是两个线性无关函数,则存在这样一个条件。定理 D 让是一个超越整函数和它的秩序是正整数或无穷大。设,和p是一个奇正整数。然后或F得到每一个非平凡解在(1.1)。事实上,在(1.2)中已经有证明的结论。例子表明在高8定理D不再成立,当是无穷的。本文的主要目的是改善上述结果的情况下,当是超越。特别地,我们找到的条件下定理D仍然成立的情况下,当是一个正整数或无穷大。我们将证明在第3节的结果如下:定理1设,其中,和先验和不等于一个正整数或无穷,任意整函数。如果定期二阶线性微分方程和的解不是一些属性是两个线性无关的解在(1.1),然后或者我们的说法,定理1的结论仍然有效,如果我们假设函数不等于一个正整数或无穷大,任意和承担的情况下,当其低阶不等于一个整数或无穷超然是任意的,我们只需要考虑在,。推论1设,其中,函数和函数是整个先验和不超过1 / 2,并且任意的。(一) 如果函数f是一个非平凡解在(1.1)中,那么和是线性相关。(二) 如果和是两个线性无关解在(1.1)中,那么。定理2设是一个超越整函数及其低阶不超过1 / 2。设,其中和p是一个奇正整数,则为每个非平凡解F到在(1.1)中。事实上,在(1.2)中证明正确的结论。我们注意到,上述结论仍然有效的假设我们注意到,我们得出定理2推广定理D,当是一个正整数或无穷,但结合定理2定理的研究。推论2设是一个超越整函数。设,其中和 p是一个奇正整数。假设要么(一)或(二)中认为:(一)不是正整数或无穷;(二)然后为每一个非平凡解在(1.1)中函数f对于。事实上,在(1.2)中已经有证明的结论。2 引理为定理的证明引理1(7),和的假设是整个周期,并且函数f是有一个非平凡解进一步假设函数f满足;,是在非恒定和理性的,而且,如果,且是常数。则存在一个整数q与 ,和是线性相关。相同的结论认为,如果是超越,和f满足,如果,然后通过一个无限措施的集合为,且引理2(10) 设是一个周期为在(包括那些可以改变这种情况下极奇数阶设是定期与整函数周期在的先验。在(1.1)中由不同的时期,有一个满足,那么和是线性无关的解。3主要结果的证明主要结果的证明的基础上8和15。定理1的证明让我们假设。正弦和是线性无关的,引理1意味着和必须是线性相关的。设,则满足微分方程, (2.1)其中是和(见12, p. 5 or 1, p. 354),且或某些非零的常数。显然,和是两个周期,而是定义函数。在(2.1),也定期与周期。因此,我们可以找到一个解析函数在,使代入(2.1)得这种表达 (2.2)由于和在,理论21,p.15给出了他们的结论, (2.3)其中,是一些整数,和函数分析和上非零,和是整函数。按照相同的 8中,我们得出, (2.4)其中,此外,下列结论由8得,其中是定义为(resp, ),定期二阶线性微分方程解的一些性质其中,(resp. 表示一个计数功能,只计算在右半平面的零点(在左半平面),是在 的零点收敛指数,它的定义为由条件,我们得到。现在(2.3)代入(2.2)中 (2.5)推论1的证明我们可以很容易地推导出定理1的推论1(一)推论1的证明(B)。假设和与线性无关,那么,我们证明推论1的结论(一),与线性相关,J =1;2。假设,然后我们可以找到的一个非零的常数,重复同样的论点定理1中使用的事实,也是能找到,我们得到与自矛盾,因此。定理2的证明假设存在一个非平凡解的f在(1.1)中,满足。我们推断,和的线性依赖推论1(a)。然而,引理2意味着和是线性无关的。这是一对矛盾。因此,认为都有非平凡解的F在(1.1)中,这就完成了定理2的证明。参考文献1 ARSCOTT F研究周期迪erential方程J。麦克米伦公司,1964年,纽约。2 BAESCH答:在明确确定的某些解决方案高阶定期微分方程的研究J。结果数学,1996,29(1-2):4255。3 BAESCH一个,斯坦梅茨N. n阶周期线性微分方程的特殊解决方案J。复变函数理论与应用,1997,34(1-2):。717。4小号乙银行就明确确定的某些解决方案,定期微分方程的研究J。复变数理论与应用,1993,23(1-2):101121。5银行之B.三Kodai J。数学线性微分方程解的值分布理论的结果。 J.,1986,9(2):225240。6银行SB,莱恩一交涉定期二阶线性微分方程解的研究J。 J.瑞恩Angew。数学,1983,344:1。21。7银行SB,兰利J K.振动整个周期COE高阶线性微分方程定理cients研究J。评论。数学。大学圣保罗,1992年,41(1):6585。8蒋年月,高Shian。关于定期二阶线性微分方程和一些相关的扰动结果的复振荡理论问题研究J。安。 ACAD。 SCI。芬恩。数学,2002,27(2):273290。CONTROLLABILITY OF NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAYAbstract In this article, we give sucient conditions for controllability of some partial neutral functional dierential equations with innite delay. We suppose that the linear part is not necessarily densely dened but satises the resolvent estimates of the Hille-Yosida theorem. The results are obtained using the integrated semigroups theory. An application is given to illustrate our abstract result.Key words Controllability; integrated semigroup; integral solution; innity delay1 IntroductionIn this article, we establish a result about controllability to the following class of partial neutral functional dierential equations with innite delay: (1)where the state variabletakes values in a Banach spaceand the control is given in ,the Banach space of admissible control functions with U a Banach space. C is a bounded linear operator from U into E, A : D(A) E E is a linear operator on E, B is the phase space of functions mapping (, 0 into E, which will be specied later, D is a bounded linear operator from B into E dened byis a bounded linear operator from B into E and for each x : (, T E, T 0, and t 0, T , xt represents, as usual, the mapping from (, 0 into E dened byF is an E-valued nonlinear continuous mapping on.The problem of controllability of linear and nonlinear systems represented by ODE in nit dimensional space was extensively studied. Many authors extended the controllability concept to innite dimensional systems in Banach space with unbounded operators. Up to now, there are a lot of works on this topic, see, for example, 4, 7, 10, 21. There are many systems that can be written as abstract neutral evolution equations with innite delay to study 23. In recent years, the theory of neutral functional dierential equations with innite delay in innite dimension was developed and it is still a eld of research (see, for instance, 2, 9, 14, 15 and the references therein). Meanwhile, the controllability problem of such systems was also discussed by many mathematicians, see, for example, 5, 8. The objective of this article is to discuss the controllability for Eq. (1), where the linear part is supposed to be non-densely dened but satises the resolvent estimates of the Hille-Yosida theorem. We shall assume conditions that assure global existence and give the sucient conditions for controllability of some partial neutral functional dierential equations with innite delay. The results are obtained using the integrated semigroups theory and Banach xed point theorem. Besides, we make use of the notion of integral solution and we do not use the analytic semigroups theory.Treating equations with innite delay such as Eq. (1), we need to introduce the phase space B. To avoid repetitions and understand the interesting properties of the phase space, suppose that is a (semi)normed abstract linear space of functions mapping (, 0 into E, and satises the following fundamental axioms that were rst introduced in 13 and widely discussed in 16.(A) There exist a positive constant H and functions K(.), M(.):,with K continuous and M locally bounded, such that, for any and ,if x : (, + a E, and is continuous on , +a, then, for every t in , +a, the following conditions hold:(i) ,(ii) ,which is equivalent to or every(iii) (A) For the function in (A), t xt is a B-valued continuous function for t in , + a.(B) The space B is complete. Throughout this article, we also assume that the operator A satises the Hille-Yosida condition :(H1) There exist and ,such that and (2)Let A0 be the part of operator A in dened byIt is well known that and the operator generates a strongly continuous semigroup on .Recall that 19 for all and ,one has and .We also recall that coincides on with the derivative of the locally Lipschitz integrated semigroup generated by A on E, which is, according to 3, 17, 18, a family of bounded linear operators on E, that satises(i) S(0) = 0,(ii) for any y E, t S(t)y is strongly continuous with values in E,(iii) for all t, s 0, and for any 0 there exists a constant l() 0, such that or all t, s 0, .The C0-semigroup is exponentially bounded, that is, there exist two constants and ,such that for all t 0. Notice that the controllability of a class of non-densely dened functional dierential equations was studied in 12 in the nite delay case.2 Main Results We start with introducing the following denition.Denition 1 Let T 0 and B. We consider the following denition.We say that a function x := x(., ) : (, T ) E, 0 0, such that for 1, 2 B and t 0. (4)Using Theorem 7 in 1, we obtain the following result.Theorem 1 Assume that (H1), (H2), and (H3) hold. Let B such that D D(A). Then, there exists a unique integral solution x(., ) of Eq. (1), dened on (,+) .Denition 2 Under the above conditions, Eq. (1) is said to be controllable on the interval J = 0, , 0, if for every initial function B with D D(A) and for any e1 D(A), there exists
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国90°刀口角尺数据监测报告
- 2025年中国2-乙基己酸数据监测研究报告
- 2025至2030年中国高精度复膜(过胶)机市场分析及竞争策略研究报告
- 2025至2030年中国防爆塑身球市场分析及竞争策略研究报告
- 2025至2030年中国钢圈挡圈市场分析及竞争策略研究报告
- 2025至2030年中国赛鸽市场分析及竞争策略研究报告
- 2025至2030年中国腰挂式无线发射机市场分析及竞争策略研究报告
- 2025至2030年中国糖尿清市场分析及竞争策略研究报告
- 2025至2030年中国益母草流浸膏市场分析及竞争策略研究报告
- 2025至2030年中国环保型成膜氟蛋白泡沫灭火剂市场分析及竞争策略研究报告
- 人工智能基础智慧树知到答案章节测试2023年武汉学院
- 《广播电视概论》考试复习题库(200题)
- 配电室巡检记录表
- 卓越绩效评价准则概述(专业性权威性实用性)
- GB/T 30142-2013平面型电磁屏蔽材料屏蔽效能测量方法
- GB/T 29894-2013木材鉴别方法通则
- 国资进场交易工作流程讲座
- 当代法律英语翻译全
- 制冷操作证培训教材制冷与空调设备运行操作作业培训教程课件
- 湖南省长沙市望城区2020-2021学年八年级下学期期末考试历史试卷
- 烟叶烘烤调制理论考试试题
评论
0/150
提交评论