




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
. . . .中考数学二次函数压轴题基本题型xOyACBMN在平面直角坐标系中,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C(1)求这个二次函数的关系解析式;长度型:(2)点M为直线AC上方抛物线上一动点,过M点作MNy轴交直线AC于点N, 当点M的坐标为多少时,线段MN有最大值,并求出其最大值; (3)点M为直线AC上方抛物线上一动点,过M点作MNy轴交直线AC于点N, 作MEAC于点E,当点M的坐标为多少时,MEN的周长有最大值,并求出其最大值; xOyACBMNE面积型:(4)点P是直线AC上方的抛物线上一动点,是否存在点P,使ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由变式:点P是直线AC上方的抛物线上一动点,使ACP的面积为整数的点P有几个,并说明理由;xOyACBP(5)点Q是直线AC下方的抛物线上一动点,是否存在点Q,使?若存在,求出点Q的坐标;若不存在,说明理由xOyACB(6)点Q是直线AC下方的抛物线上一动点,是否存在点Q,使?若存在,求出点Q的坐标;若不存在,说明理由xOyACBxOyACB 变式:抛物线上是否存在点P,使,若存在,求出点P的坐标,若不存在,说明理由xOyACBxOyACB特殊三角形存在性:(7)在平面直角坐标系中,是否存在点Q,使BCQ是等腰直角三角形?若存在,求出点Q的坐标;若不存在,说明理由xOyACB(8)在抛物线的对称轴上是否存在点Q使BCQ是等腰三角形?若存在,求出点Q的坐标;若不存在,说明理由;(等腰三角形:两圆一线)xOyACB xOyACB xOyACB(9)在抛物线的对称轴上是否存在点Q,使ACQ为直角三角形;若存在,求出点Q的坐标;若不存在,说明理由;xOyACBxOyACBxOyACB几何最值型:(10)在抛物线的对称轴上是否存在点Q,使BCQ的周长最小;若存在,求出点Q的坐标与周长最小值;若不存在,说明理由xOyACBxOyACB(11) 在抛物线的对称轴上是否存在点Q,最大;若存在,求出点Q的坐标;若不存在,说明理由;(12)若D为OC的中点,P是抛物线对称轴上一动点,Q是x轴上一动点,当P、Q两点的坐标为多少时四边形CPQD的周长最小?并直接写出四边形CPQD周长的最小值;xOyACDPbQxOyACD相似存在性:(13)点Q是坐标轴上一动点,是否存在点Q,使以点B、O、Q为顶点的三角形与AOC相似?若存在,求出点Q的坐标;若不存在,说明理由;xOyACBxOyACB(14)点Q是抛物线上一动点,过点Q作QE垂直于x轴,垂足为E是否存在点Q,使以点B、Q、E为顶点的三角形与AOC相似?若存在,求出点Q的坐标;若不存在,说明理由;xOyACBxOyACB角度问题:(15)抛物线上是否存在的点Q,使QCA=45, 若存在,求出Q点的坐标;若不存在,说明理由; xOyACB(16)抛物线上是否存在的点Q,使QCA=OCB, 若存在,求出Q点的坐标;若不存在,说明理由;xOyACBxOyACB*变式:抛物线上是否存在的点Q,使QCA+OCB =45, 若存在,求出Q点的坐标;若不存在,说明理由;xOyACBxOyACBxOyACB(17)在抛物线的对称轴上是否存在点Q到直线BC的距离与到x轴的距离相等?若存在求出点Q,若不存在 请说明理由;(在抛物线的对称轴上是否存在点Q,使Q与x轴和直线BC都相切?)特殊四边形存在性问题:(18)点M为抛物线上一动点,过M点作MNy轴交直线AC于点N,当以O、C、M、N为顶点的四边形是平行四边形时,求出点M的坐标;若不存在,说明理由; xOyACBMN xOyACB(19)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,说明理由; xOyACBxOyACB xOyACB (20)点Q是抛物线上一动点,点M为抛物线对称轴上一动点,当以A、C、M、Q为顶点的四边形是平行四边形?,求出点Q的坐标;xOyACB xOyACB xOyACB (21)Q为抛物线的对称轴上一动点,点P在坐标平面内,若以A、C、P、Q为顶点的四边形为矩形,求Q点的坐标;以A、C、P、Q为顶点的四边形能为正方形吗?若能,请直接写出此时Q点的坐标;(矩形存在性问题转化成直角三角形存在性问题)xOyACB xOyACB xOyACB(22)Q为抛物线上一动点,点P在坐标平面内,若四边形APCQ为菱形,求Q点的坐标; xOyACB(23)Q为抛物线的对称轴上一动点,点P在坐标平面内,若以A、C、P、Q为顶点的四边形为菱形,求Q点的坐标;(菱形存在性问题转化成等腰三角形存在性问题)xOyACBxOyACB1. 若不给自己设限,则人生中就没有限制你发挥的藩篱。2. 若不是心宽似海,哪有人生风平浪静。在纷杂的尘世里,为自己留下一片纯静的心灵空间,不管是潮起潮落,也不管是阴晴圆缺,你都可以免去浮躁,义无反顾,勇往直前,轻松自如地走好人生路上的每一步3. 花一些时间,总会看清一些事。用一些事情,总会看清一些人。有时候觉得自己像个神经病。既纠结了自己,又打扰了别人。努力过后,才知道许多事情,坚持坚持,就过来了。4. 岁月是无情的,假如你丢给它的是一片空白
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 林业割草劳务合同范本
- 分期买车购车合同范本
- 合同范本模板哪个好用
- 网店外包服务合同范本
- 餐饮转租转让合同范本
- 修车的劳务合同范本
- 过敏性紫癜肾脏受累护理查房
- 会计岗位劳务合同范本
- 分红协议合同范本
- 房子租品合同范本
- 2025至2030中国密封圈行业项目调研及市场前景预测评估报告
- DZ∕T 0399-2022 矿山资源储量管理规范(正式版)
- 《纯物质热化学数据手册》
- 中国儿童严重过敏反应诊断与治疗建议(2022年)解读
- 电动力学-同济大学中国大学mooc课后章节答案期末考试题库2023年
- 综采工作面液压支架安装回撤工理论考核试题及答案
- 放射科质控汇报
- 2023年山东威海乳山市事业单位招聘带编入伍高校毕业生12人笔试备考题库及答案解析
- 结构方案论证会汇报模板参考83P
- 《企业人力资源管理专业实践报告2500字》
- 万东GFS型高频高压发生装置维修手册
评论
0/150
提交评论