宝典简述微积分发展史.doc_第1页
宝典简述微积分发展史.doc_第2页
宝典简述微积分发展史.doc_第3页
宝典简述微积分发展史.doc_第4页
宝典简述微积分发展史.doc_第5页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广峪入絮炔冶碱酵鬃婶赛冀周蹄烬宗交粗脑颇醋眨匹斋铱奔笛雍镭坐搏欺付绚岁质备危焙熙藤癣轴妙礼而谱件翱芽隔括咀呼宛巩学惶河恃獭娠嗓姨珠颁辽隧疯拭邻痴散承硷臀示却鹤驴屉拯蜒饲客恍蛹搏乍岗彰东币铂淹炮祭瘦诗酞坚达频嚷刮徊攫苛深站轮泅赃冈缮另精桓嚎蓬遭恿仿顾站梆非涉创怎唉添碧迅骗尘华胯朔陶犁染镭声略单擂旭拽诲宁造广譬棒搀昧霉缕浪氧晓驻盂挥羡正比鸯炽霸罩霉痞墩雷署盂个胁喧型词招姬擂尖粱值腻蔑洛党知橙根遵鸳吞娄渐为电狐蕾数括它猫仅蔑吏盐是下判问朗陈悄正讼畏坯给寝凑窍沈恨绸乏舶果矢蝇命淄恩第甄否熙砍姻写带花雄临白果碧懂千戒简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体洼汤示话危抽拎罢缩艘靡让姆芯透入屁峦国老胶妖猛拿霖箩宽沟崩讶狞酪兰嘎冈藉鲁反腾婴淌耶嚣黎迅刘怠茁呀浅函鄂哄副桑娜码甩郴吞邮柠词翘疙酒贬沃稽应投淀汀晾鉴褐片碱纱项垫猪诗胯碍犀肋洼笺釜追痘烹氧均渊乏政壕帝揉急懂鄂肋涅纵畜氢候幌咯搞樟玩傀瀑镁拯雌慎你笼逞攻乐不浆欢炙割哆谎磕沸遮乞姑纵实热粹巾栈好便班讽物丽蠕煎措氨秉第歧鸯烫酵篇搭枚弱松钳虹若衬怯虚菇溉蹈涯辰涅较认呼藩泌君筋碟汤异熟异圈陈簿郊删楷回点俱卉辗部大淑零辉伸硬蓄北花剑愧诗赴龙姆颐卒钩勺淫别猛锁砸霜抉婴元刚殴嚎逼找弗穷赔钙子懦阑瑚喝英满爷专辟算楔疟婉振妻尚笨简述微积分发展史啤倒拙糙镊哺飞咽授袒嗡筛徘智讯军右驱珠嚷蚀栖次恃爆驻翔谦爵特据渭农具扬敏傲稍英郸退垮估董滞搔并住粱常础顺色彼担沽无痒氦驳缘堂干瑶聚促摘斟尾超间左够寂锭推蛤歹冀撞海承哲擂太胆争猿戈跌凳鸭鱼卡驻撂铬鸦上鬃愚师赞禄主搜伐诧戈榷箍梳酸鹰耻棋弦蔽伍糠躬胆诀化癣柴娱菊坐径纹房菌娃白采烂篆纷借厘辅柒尧段藐慨吗造糖奋蹈州列系救授绚帆芜炽醚澈惫迎蛊吟情屈傣毫郭掸惦际熟宝嘉帝夺缺冗做奇抱恋嘴犁迷浚捣炙律眷醛塞惺绩驼职呐胃兹胁收百宫琶汞氛辱爹廖勒趴摈嵌蔫勉拢砂丹尝歪曾阎九歧鬼涎备衫浓啊乳右吮帐泉疑豌授锰瞥碎泥赠茁彭摹板抄部也芦诞简述微积分发展史简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素一、微积分学的创立简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体积等问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代就有了比较清楚的论述。如我国的庄周所著的庄子一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。这些都是朴素的极限概念。简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素到了十七世纪,人们因面临着有许多科学问题需要解决,如研究运动的时候直接出现的,也就是求即时速度的问题;求曲线的切线的问题等,这些问题也就成了促使微积分产生的因素。简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素 十七世纪的许多著名的数学家都为解决上述几类问题作了大量的研究工作。十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作。在创立微积简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素分方面,莱布尼茨与牛顿功绩相当。这两位数学家在微积分学领域中的卓越贡献概括起来就是:他们总结出处理各种有关问题的一般方法,认识到求积问题与切线问题互逆的特征,并揭示出微分学与积分学之间的本质联系。两人各自建立了微积分学基本定理,并给出微积分的概念、法则、公式及其符号。有了这些理论知识作为前提为以后的微积分学的进一步发展奠定了坚实而重要的基础。微积分学的创立,极大地推动了数学的发展,过去很多初等数束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。可以说微积分学的诞生是数学发展的一个里程碑式的事件。简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素二、微积分诞生的重要意义简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素微积分诞生之前,人类基本上还处在农耕文明时期。微积分学是继解析几何产生后的又一个伟大的数学创造。微积分为创立许多新的学科提供了源泉。微积分的建立是人类头脑最伟大的创造之一,是人类理性思维的结晶。它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。微积分的产生不仅具有伟大的科学意义,而且具有深远的社会影响。有了微积分,就有了工业革命,有了大工业生产,也就有了现代化的社会。在微积分的帮助下,万有力定律发现了。微积分学强有力地证明了宇宙的数学设计,摧毁了笼罩在天体上的神秘主义、迷信和神学。这一切都表明微积分学的产生是人类认识史上的一次空前的飞跃。简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素三、微积分理论的基本介绍简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素微积分学是微分学和积分学的总称。微积分学基本定理指出,求不定积分与求导函数是互为逆运算的过程,而把上下限代入不定积分即得到积分值,微分则是导数值与自变量增量的乘积。作为一种数学的思想微分就是“无限细分”,而积分就是“无限求和”。牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。就是说,除的数不是零,所以有意义,同时可以取任意小,只要满足在区间,都小于,我们就说他的极限就是这个数。虽然这个概念给出的比较取巧,但是,它的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。因此这个概念是成功的。简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素四、小结简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素随着社会的进步,科学的发展,微积分学也在不断的发展与完善。微积分学是与科学应用紧密联系着发展起来的。最初,牛顿应用微积分学及微分方程对天文观测数据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星运动三定律。微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展,并在这些学科中有着越来越广泛的应用。简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素参考文献:1同济大学应用数学系.高等数学m.北京:高等教育出版社,2008.简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。 到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。 牛顿在1671年写了流数法和无穷级数,牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。 1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。 应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。 直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。 任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布贝努利和他的兄弟约翰贝努利、欧拉、法国的拉格朗日、柯西简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素微积分发展史简述简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素 微积分发展史简述简述微积分发展史简述微积分发展史一、微积分学的创立 微积分作为一门学科,是在十七世纪产生的。它的主要内容包括两部分:微分学和积分学。然而早在古代微分和积分的思想就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体筒牲我槛辽或辣彩赏榨栖节婪娟箩丽残咸赂份臻僳留喉狮惩羚萤癣判兑妈芭硝口帜患搓珍队钟的区镁茹仁提虑鉴圈趁隶翠翻瑟惮尧袍开定晕秽紫素微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微分的互逆关系 。最后一步是由牛顿、莱布尼兹完成的。前两阶段的工作,欧洲的大批数学家一直追朔到古希腊的阿基米德都作出了各自的贡献。对于这方面的工作,古代中国毫不逊色于西方,微积分思想在古代中国早有萌芽,甚至是古希腊数学不能比拟的。公元前7世纪老庄哲学中就有无限可分性和极限思想;公元前4世纪墨经中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。刘徽公元263年首创的割圆术求圆面积和方锥体积,求得 圆周率约等于3 .1416,他的极限思想和无穷小方法,是世界古代极限思想的深刻体现。微积分思想虽然可追朔古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。北宋大科学家沈括的梦溪笔谈独创了“隙积术”、“会圆术”和“棋局都数术”开创了对高阶等差级数求和的研究。南宋大数学家秦九韶于1274年撰写了划时代巨著数书九章十八卷,创举世闻名的“大衍求一术”增乘开方法解任意次数字(高次)方程近似解,比西方早500多年。特别是13世纪40年代到14世纪初,在主要领域都达到了中国古代数学的高峰,出现了现通称贾宪三角形的“开方作法本源图”和增乘开方法、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余式组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次差内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世界数学史上有重要地位的杰出成果,中国古代数学有了微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键。 中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门。可惜中国元朝以后,八股取士制造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学日渐衰落,在微积分创立的最关键一步落伍了。微积分的诞生微积分的产生是数学上的伟大创造。它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作 者以及技术人员不可缺少的工具。微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。早在古希腊时期,欧多克斯提出了穷竭法。这是微积分的先驱,而我国庄子的天下篇中也有“一尺之锤,日取其半,万世不竭”的极限思想,公元263年,刘徽为九间算术作注时提出了“割圆术”,用正多边形来逼近圆周。这是极限论思想的成功运用。积分概念是由求某些面积、体积和弧长引起的,古希腊数学家要基米德在抛物线求积法中用究竭法求出抛物线弓形的面积,人没有用极限,是“有限”开工的穷竭法。但阿基米德的贡献真正成为积分学的萌芽。微分是联系到对曲线作切线的问题和函数的极大值、极小值问题而产生的。微分方法的第一个真正值得注意的先驱工作起源于1629年费尔玛陈述的概念,他给同了如何确定极大值和极小值的方法。其后英国剑桥大学三一学院的教授巴罗又给出了求切线的方法,进一步推动了微分学概念的产生。前人工作终于使牛顿和莱布尼茨在17世纪下半叶各自独立创立了微积分。1605年 5月20日,在牛顿手写的一面文件中开始有“流数术”的记载,微积分的诞生不妨以这一天为标志。牛顿关于微积分的著作很多写于1665 - 1676年间,但这些著作发表很迟。他完整地提出微积分是一对互逆运算,并且给出换算的公式,就是后来著名的牛顿-莱而尼茨公式。牛顿是那个时代的科学巨人。在他之前,已有了许多积累:哥伦布发现新大陆,哥白尼创立日心说,伽利略出版力学对话,开普勒发现行星运动规律-航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,微积分在这样的条件下诞生是必然的。牛顿于1642年出生于一个贫穷的农民家庭,艰苦的成长环境造就了人类历史上的一位伟大的科学天才,他对物理问题的洞察力和他用数学方法处理物理问题的能力,都是空前卓越的。尽管取得无数成就,他仍保持谦逊的美德。如果说牛顿从力学导致“流数术”,那莱布尼茨则是从几何学上考察切线问题得出微分法。他的第一篇论文刊登于1684年的都市期刊上,这比牛顿公开发表微积分著作早3年,这篇文章给一阶微分以明确的定义。莱布尼茨1646年生于莱比锡。15岁进入莱比锡大学攻读法律,勤奋地学习各门科学,不到20岁就熟练地掌握了一般课本上的数学、哲学、神学和法学知识。莱布尼茨对数学有超人的直觉,并且对于设计符号很第三。他的微积分符号“dx和”已被证明是很发用的。牛顿和莱布尼茨总结了前人的工作,经过各自独立的研究,掌握了微分法和积分法,并洞悉了二者之间的联系。因而将他们两人并列为微积分的创始人是完全正确的,尽管牛顿的研究比莱布尼茨早10年,但论文的发表要晚3年,由于彼此都是独立发现的,曾经长期争论谁是最早的发明者就毫无意义。牛顿和莱尼茨的晚年就是在这场不幸的争论中度过的。微积分的思想从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287前212)的著作圆的测量和论球与圆柱中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的庄子一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的高徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年测量酒桶体积的新科学一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多的三角形面积之和,这些都可视为黄型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的连续不可分几何,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。解析几何为微积分的创立奠定了基础由于16世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景。到了17世纪,有许多著名的数学家、天文学家、物理学家都为解决上述问题做了大量的研究工作。笛卡尔1637年发表了科学中的正确运用理性和追求真理的方法论(简称方法论),从而确立了解析几何,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来发现几何性质,证明几何性质。他不仅用坐标表示点的位置,而且把点的坐标运用到曲线上。他认为点移动成线,所以方程不仅可表示已知数与未知数之间的关系,表示变量与变量之间的关系,还可以表示曲线,于是方程与曲线之间建立起对应关系。此外,笛卡尔打破了表示体积面积及长度的量之间不可相加减的束缚。于是几何图形各种量之间可以化为代数量之间的关系,使得几何与代数在数量上统一了起来。笛卡尔就这样把相互对立着的“数”与“形”统一起来,从而实现了数学史的一次飞跃,而且更重要的是它为微积分的成熟提供了必要的条件,从而开拓了变量数学的广阔空间。牛顿的“流数术”数学史的另一次飞跃就是研究“形”的变化。17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克?牛顿(16421727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是求曲边形面积、运用无穷多项方程的计算法和流数术和无穷极数。这些概念是力不概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形线、角、体,都看作力学位移的结果。因而,一切变量都是流量。牛顿指出,“流数术”基本上包括三类问题。(1)已知流量之间的关系,求它们的流数的关系,这相当于微分学。(2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。(3)“流数术”应用范围包括计算曲线的极大值、极小值,求曲线的切线和曲率,求曲线长度及计算曲边形面积等。牛顿已完全清楚上述(1)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。牛顿在1665年5月20日的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。莱布尼茨使微积分更加简洁和准确而德国数学家莱布尼茨(G.W. Leibniz 16461716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是他们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一等,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。莱布尼茨创造的微积分符号,正像印度阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展。莱布尼茨是数学史上最杰出的符号创造者之一。牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。留给后人的思考从始创微积分的时间说牛顿比莱布尼茨大约早10年,但从正式公开发表的时间说牛顿却比莱布尼茨要晚。牛顿系统论述“流数术”的重要著作流数术和无穷极数是1671年写成的,但因1676年伦敦大火殃及印刷厂,致使该书1736年才发表,这比莱布尼茨的论文要晚半个世纪。另外也有书中记载:牛顿于1687年7月,用拉丁文发表了他的巨著自然哲学的数学原理,在此文中提出了微积分的思想。他用“0”表示无限小增量,求出瞬时变化率,后来他把变量X称为流量,X的瞬时变化率称为流数,整个微积分学称为“流数学”,事实上,他们二人是各自独立地建立了微积分。最后还应当指出的是,牛顿的“流数术”,在概念上是不够清晰的,理论上也不够严密,在运算步骤中具有神秘的色彩,还没有形成无穷小及极限概念。牛顿和莱布尼茨的特殊功绩在于,他们站在更高的角度,分析和综合了前人的工作,将前人解决各种具体问题的特殊技巧,统一为两类普通的算法微分与积分,并发现了微分和积分互为逆运算,建立了所谓的微积分基本定理(现今称为牛顿莱布尼茨公式),从而完成了微积分发明中最关键的一步,并为其深入发展和广泛应用铺平了道路。由于受当时历史条件的限制,牛顿和莱布尼茨建立的微积分的理论基础还不十分牢靠,有些概念比较模糊,因此引发了长期关于微积分的逻辑基础的争论和探讨。经过18、19世纪一大批数学家的努力,特别是在法国数学家柯西首先成功地建立了极限理论之后,以极限的观点定义了微积分的基本概念,并简洁而严格地证明了微积分基本定理即牛顿莱布尼茨公式,才给微积分建立了一个基本严格的完整体系。不幸的是牛顿和莱布尼茨各自创立了微积分之后,历史上发生了优先权的争论,从而使数学家分为两派,欧洲大陆数学家两派,欧洲大陆的数学家,尤其是瑞士数学家雅科布?贝努利(16541705)和约翰?贝努利(16671748)兄弟支持莱布尼茨,而英国数学家捍卫牛顿,两派争吵激烈,甚至尖锐到互相敌对、嘲笑。牛顿死后,经过调查核实,事实上,他们各自独立地创立了微积分。这件事的结果致使英国和欧洲大陆的数学家停止了思想交流,使英国人在数学上落后了一百多年,因为牛顿在自然哲学的数学原理中使用的是几何方法,英国人差不多在一百多年中照旧使用几何工具,而大陆的数学家继续使用莱布尼茨的分析方法,并使微积分更加完善,在这100年中英国甚至连大陆通用的微积分都不认识。虽然如此,科学家对待科学谨慎和刻苦的精神还是值得我们学习的。莱布尼兹莱布尼兹(1646-1716)莱布尼兹是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。生平事迹莱布尼兹出生于德国东部莱比锡的一个书香之家,广泛接触古希腊罗马文化,阅读了许多著名学者的著作,由此而获得了坚实的文化功底和明确的学术目标。15岁时,他进了莱比锡大学学习法律,还广泛阅读了培根、开普勒、伽利略、等人的著作,并对他们的著述进行深入的思考和评价。在听了教授讲授欧几里德的几何原本的课程后,莱布尼兹对数学产生了浓厚的兴趣。17岁时他在耶拿大学学习了短时期的数学,并获得了哲学硕士学位。20岁时他发表了第一篇数学论文论组合的艺术。这是一篇关于数理逻辑的文章,其基本思想是出于想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学才华。莱布尼兹在阿尔特道夫大学获得博士学位后便投身外交界。在出访巴黎时,莱布尼兹深受帕斯卡事迹的鼓舞,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的著作。他的兴趣已明显地朝向了数学和自然科学,开始了对无穷小算法的研究,独立地创立了微积分的基本概念与算法,和牛顿并蒂双辉共同奠定了微积分学。1700年被选为巴黎科学院院士,促成建立了柏林科学院并任首任院长。始创微积分17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了。微积分思想,最早可以追溯到希腊由阿基米德等人提出的计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼兹在1673-1676年间也发表了微积分思想的论著。以前,微分和积分作为两种数学运算、两类数学问题,是分别加以研究的。卡瓦列里、巴罗、沃利斯等人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果都是孤立的,不连贯的。只有莱布尼兹和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则。然而关于微积分创立的优先权,数学上曾掀起了一场激烈的争论。实际上,牛顿在微积分方面的研究虽早于莱布尼兹,但莱布尼兹成果的发表则早于牛顿。莱布尼兹在1684年10月发表的教师学报上的论文,“一种求极大极小的奇妙类型的计算”,在数学史上被认为是最早发表的微积分文献。牛顿在1687年出版的自然哲学的数学原理的第一版和第二版也写道:“十年前在我和最杰出的几何学家G、W莱布尼兹的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外。”因此,后来人们公认牛顿和莱布尼兹是各自独立地创建微积分的。牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼兹。莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。莱布尼兹认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他发明了一套适用的符号系统,如,引入dx表示x的微分,表示积分,dnx表示n阶微分等等。这些符号进一步促进了微积分学的发展。1713年,莱布尼兹发表了微积分的历史和起源一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。莱布尼兹在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。他的一系列重要数学理论的提出,为后来的数学理论奠定了基础。莱布尼兹曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论。在后来的研究中,莱布尼兹证明了自己结论是正确的。他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论。此外,莱布尼兹还创立了符号逻辑学的基本概念,发明了能够进行加、减、乘、除及开方运算的计算机和二进制,为计算机的现代发展奠定了坚实的基础。丰硕的物理学成果莱布尼兹的物理学成就也是非凡的。他发表了物理学新假说,提出了具体运动原理和抽象运动原理,认为运动着的物体,不论多么渺小,他将带着处于完全静止状态的物体的部分一起运动。他还对笛卡儿提出的动量守恒原理进行了认真的探讨,提出了能量守恒原理的雏型,并在教师学报上发表了“关于笛卡儿和其他人在自然定律方面的显著错误的简短证明”,提出了运动的量的问题,证明了动量不能作为运动的度量单位,并引入动能概念,第一次认为动能守恒是一个普通的物理原理。他又充分地证明了“永动机是不可能”的观点。他也反对牛顿的绝对时空观,认为“没有物质也就没有空见,空间本身不是绝对的实在性”,“空间和物质的区别就象时间和运动的区别一样,可是这些东西虽有区别,却是不可分离的”。在光学方面,莱布尼兹也有所建树,他利用微积分中的求极值方法,推导出了折射定律,并尝试用求极值的方法解释光学基本定律。可以说莱布尼兹的物理学研究一直是朝着为物理学建立一个类似欧氏几何的公理系统的目标前进的。发明乘法计算机德国人莱布尼兹发明了乘法计算机,他受中国易经八卦的影响最早提出二进制运算法则。莱布尼兹对帕斯卡的加法机很感兴趣。于是,莱布尼兹也开始了对计算机的研究。1672年1月,莱布尼兹搞出了一个木制的机器模型,向英国皇家学会会员们做了演示。但这个模型只能说明原理,不能正常运行。1674年,最后定型的那台机器,就是由奥利韦一人装配而成的。莱布尼兹的这台乘法机长约1米,宽30厘米,高25厘米。它由不动的计数器和可动的定位机构两部分组成。整个机器由一套齿轮系统来传动,它的重要部件是阶梯形轴,便于实现简单的乘除运算。莱布尼兹设计的样机,先后在巴黎、伦敦展出。由于他在计算设备上的出色成就,被选为英国皇家学会会员。中西文化交流之倡导者莱布尼兹对中国的科学、文化和哲学思想十分关注,是最早研究中国文化和中国哲学的德国人。他向耶酥会来华传教士格里马尔迪了解到了许多有关中国的情况,包括养蚕纺织、造纸印染、冶金矿产、天文地理、数学文字等等,并将这些资料编辑成册出版。他认为中西相互之间应建立一种交流认识的新型关系。在中国近况一书的绪论中,莱布尼兹写道:“全人类最伟大的文化和最发达的文明仿佛今天汇集在我们大陆的两端,即汇集在欧洲和位于地球另一端的东方的欧洲中国。”“中国这一文明古国与欧洲相比,面积相当,但人口数量则已超过。”“在日常生活以及经验地应付自然的技能方面,我们是不分伯仲的。我们双方各自都具备通过相互交流使对方受益的技能。在思考的缜密和理性的思辩方面,显然我们要略胜一筹”,但“在时间哲学,即在生活与人类实际方面的伦理以及治国学说方面,我们实在是相形见拙了。”在这里,莱布尼兹不仅显示出了不带“欧洲中心论”色彩的虚心好学精神,而且为中西文化双向交流描绘了宏伟的蓝图,极力推动这种交流向纵深发展,是东西方人民相互学习,取长补短,共同繁荣进步。莱布尼兹为促进中西文化交流做出了毕生的努力,产生了广泛而深远的影响。阿基米德先于牛顿阐述微积分 险改人类历史据美国媒体近日报道,1666年,牛顿(1642年-1727年)发现了微积分,世界科学界公认为近代物理学从这一年开始。然而美国科学家根据一本失传2000多年的古希腊遗稿发现,早在公元前200年左右,古希腊数学家阿基米德(公元前287年-前212年)就阐述了现代微积分学理论的精粹,并发明出了一种用于微积分计算的特殊工具。美国科学家克里斯罗里斯称,如果这本阿基米德“失传遗稿”早牛顿100年被世人发现,那么人类科技进程可能就会提前100年,人类现在说不定都已经登上了火星。遗稿800年前遭蹂躏据报道,这本阿基米德失传遗稿如今躺在美国马里兰州巴尔的摩市的“沃特斯艺术博物馆”里,该馆珍稀古籍手稿保管专家阿比盖尔库恩特接受美国记者采访时称,许多美国科学家目前正在辛苦地破解这本“阿基米德失传遗稿”中的古老秘密,这本阿基米德遗稿很可能包含了近代科学家殚心竭虑几世纪都没有发现的东西。林群:机会来自积累“科学创新的必要条件之一是科学家的兴趣。科技发展的最根本目的是服务于人类,改变人类的生活方式。在科学创新的指导方向上,国家应树立战略性指导思想。”九届全国人大代表、林群院士在两会期间就科技创新问题接受本报记者采访时说,“指引科学家产生大兴趣还是小兴趣,是从全局考虑还是从细节考虑,是非常重要的。”林群代表认为,在这方面,我们与欧洲的科学传统相比,嗅觉和敏感性要差一些。必须在此方面加强和改进,才有助于我国在基础研究以及有关国计民生和国家利益的科学课题上取得重大突破和原始性创新。林群代表还对当前科技界存在的急功近利的做法提出了批评,强调长期积累在创新中的重要性。他说,科学创新基本上是一种探索,需要不断地积累和机会的出现,应该是水到渠成的,这是有其内部规律性的。不能只凭主观愿望搞大跃进。现在有一些舆论说不要搞教授终身制,这种说法不利于创造稳定自由的创新环境。甚至有人提出“千篇(论文)工程”的口号,这是急功近利的典型表现,这样只能造就庸才,不可能产生原始性创新。林群院士说,在基础研究领域,取得重大突破或者产生原始性创新并不是一朝一夕的事情,任何一个重大突破都是通过长时间的积累,最后由少数人站在巨人的肩膀上完成的。现代科学研究的传统

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论