




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的单调性和最值考试要求1、函数单调区间的判定2、利用函数单调性求最值典题精讲板块一:函数的单调性与单调区间1、增函数、减函数增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2当x1x2时,都有_,那么就说函数f(x)在区间D上是增函数当x10,即x,而ylog5u为(0,)上的增函数,当x时,u2x1也为R上的增函数,故原函数的单调增区间是.2、 函数yx|1x|的单调增区间为_解析:yx|1x|作出该函数的图像如图所示由图像可知,该函数的单调增区间是(,1考点二:函数单调性的判断【例2】函数f(x)在R上是增函数,若ab0,则有()Af(a)f(b)f(a)f(b) Bf(a)f(b)f(a)f(b)Cf(a)f(b)f(a)f(b) Df(a)f(b)f(a)f(b)解析:选C.应用增函数的性质判断ab0,ab,ba.又函数f(x)在R上是增函数,f(a)f(b),f(b)f(a)f(a)f(b)f(a)f(b)【变式2】1、下列四个函数:y;yx2x;y(x1)2;y2.其中在(,0)上为减函数的是()A BC D解析:选A.y1.其减区间为(,1),(1,)yx2x(x)2,减区间为(,)y(x1)2,其减区间为(1,),与相比,可知为增函数2、 试讨论函数f(x)x(k0)的单调性法一:由解析式可知,函数的定义域是(,0)(0,)在(0,)内任取x1,x2,令x1x2,那么f(x2)f(x1)(x2x1)k(x2x1).因为0x10,x1x20.故当x1,x2(,)时,f(x1)f(x2),即函数在(0,)上单调递减考虑到函数f(x)x(k0)是奇函数,在关于原点对称的区间上具有相同的单调性,故在(,)上单调递增,在(,0)上单调递减综上,函数f(x)在(,)和(,)上单调递增,在(,0)和(0,)上单调递减法二:f(x)1.令f(x)0得x2k,即x(,)或x(,),故函数的单调增区间为(,)和(,)令f(x)0得x2,得1x0,x2x30,x3x10,则f(x1)f(x2)f(x3)的值()AA一定大于0 B一定小于0C等于0 D正负都有可能6、若函数f(x)定义在1,3上,且满足f(0)f(1),则函数f(x)在区间1,3上的单调性是() A单调递增 B单调递减 C先减后增 D无法判断解析:选D.函数单调性强调x1,x21,3,且x1,x2具有任意性,虽然f(0)f(3a)的解集为_解析:作出函数f(x)的图像,如图所示,则函数f(x)在R上是单调递减的由f(a24)f(3a),可得a243a,整理得a23a40,即(a1)(a4)0,解得1a4,所以不等式的解集为(1,4)答案:(1,4)10、已知函数f(x)满足对任意的实数x1x2,都有0,则x2.函数y(x23x2)的定义域为(,1)(2,)又ux23x2的对称轴x,且开口向上ux23x2在(,1)上是单调减函数,在(2,)上是单调增函数而yu在(0,)上是单调减函数,y(x23x2)的单调减区间为(2,),单调增区间为(,1)2、已知函数f(x)log2x,若x1(1,2),x2(2,),则f(x1)_f(x2)(填“”或“”) 解析:函数f(x)log2x在(1,)上为增函数,且f(2)0,当x1(1,2)时,f(x1)f(2)0,即f(x1)0.3、已知函数f(x)对于任意x,yR,总有f(x)f(y)f(xy),且当x0时,f(x)x2,则x1x20,f(x1)f(x2)f(x1)f(x2)f(x1x2)又当x0时,f(x)0,f(x1x2)0,即f(x1)f(x2)因此f(x)在R上是减函数(2)f(x)在R上是减函数,f(x)在3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学招教常考题目及答案
- 初中生春节作文900字8篇
- 观千与千寻有感650字(11篇)
- 家庭农场生产经营与资源利用合同
- 时间日期变更课件
- 企业生产成本控制及管理工具
- 媒体采购推广合作合同
- 早期胃癌课件
- 航空航天技术研发投入统计表
- 农民利用自然资源合同
- 役前训练考试试题及答案
- 电荷及其守恒定律、库仑定律巩固练习
- YY 0666-2008针尖锋利度和强度试验方法
- JJF 1002-2010国家计量检定规程编写规则
- 小沈阳《四大才子》欢乐喜剧人台词
- 全套课件-水利工程管理信息技术
- 缝纫机线迹图示教学课件
- 2022年衡阳市南岳区社区工作者招聘笔试题库及答案解析
- 阀门解体检修及研磨(课堂PPT)
- T∕CVIA 41-2014 液晶电视屏主流尺寸规范
- 吴学文实战经验分享
评论
0/150
提交评论