




免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
引向天线的研究与设计摘要:天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换,它是发射和接收电磁波的重要的无线电设备,没有天线也就没有无线电通信。本文主要介绍引向天线的设计以及其MATLAB仿真,并且讲解了天线的基础知识以及引向天线的重要参数等,让大家对引向天线有更多的认识。关键词:引向天线、方向系数、方向图To the antennas research and designAbstract: the antenna is a kind of converter, it spread on a transmission of guided wave, transform into in the unbounded media (usually free space) propagation of electromagnetic waves, or opposite transformation, it is the transmission and reception of electromagnetic wave important radio equipment, no antenna there would be no radio communication. This paper mainly introduces to the antenna design and the MATLAB simulation, and explained the basic knowledge of antenna and the important parameters to antenna, giving you the right to antenna have more understanding.Keywords: to antenna, direction coefficient, direction chart一 、天线的基础知识 1.1 基本振子的辐射 1.1.1 电基本振子的辐射电基本振子(Electric Short Dipole)又称电流元,它是指一段理想的高频电流直导线,其长度l远小于波长,其半径a远小于l,同时振子沿线的电流I处处等幅同相。用这样的电流元可以构成实际的更复杂的天线,因而电基本振子的辐射特性是研究更复杂天线辐射特性的基础。 在电磁场理论中,已给出了在球坐标系原点O沿z轴放置的电基本振子在无限大自由空间中场强的表达式为 (111) (112) 式中,E为电场强度,单位为V/m;H为磁场强度,单位为A/m;场强的下标r、表示球坐标系中矢量的各分量;er,e,e分别为球坐标系中沿r、增大方向的单位矢量;0=10-9/(36)(F/m),为自由空间的介电常数;0=410-7(H/m),为自由空间导磁率; 为自由空间相移常数,为自由空间波长。式中略去了时间因子ejt。1.1.2 磁基本振子的辐射磁基本振子(Magnetic Short Dipole)又称磁流元、磁偶极子。尽管它是虚拟的,迄今为止还不能肯定在自然界中是否有孤立的磁荷和磁流存在,但是它可以与一些实际波源相对应,例如小环天线或者已建立起来的电场波源,用此概念可以简化计算,因此讨论它是有必要的。设想一段长为l(l)的磁流元Iml置于球坐标系原点,根据电磁对偶性原理,只需要进行如下变换:(113)其中,下标e,m分别对应电源和磁源,则磁基本振子远区辐射场的表达式为(114) 比较电基本振子的辐射场与磁基本振子的辐射场,可以得知它们除了辐射场的极化方向相互正交之外,其它特性完全相同。1.2 发射天线的电参数 1.2.1 方向函数由电基本振子的分析可知,天线辐射出去的电磁波虽然是一球面波,但却不是均匀球面波,因此,任何一个天线的辐射场都具有方向性。所谓方向性,就是在相同距离的条件下天线辐射场的相对值与空间方向(子午角、方位角)的关系,若天线辐射的电场强度为E(r,),把电场强度(绝对值)写成 (121) 式中I为归算电流,对于驻波天线,通常取波腹电流Im作为归算电流;f(,)为场强方向函数。因此,方向函数可定义为 (122) 将电基本振子的辐射场表达式(114)代入上式,可得电基本振子的方向函数为 (123) 为了便于比较不同天线的方向性,常采用归一化方向函数,用F(,)表示,即 (124) 式中,fmax(,)为方向函数的最大值;Emax为最大辐射方向上的电场强度;E(,)为同一距离(,)方向上的电场强度。归一化方向函数F(,)的最大值为1。因此,电基本振子的归一化方向函数可写为F(,)=|sin| (125)为了分析和对比方便,今后我们定义理想点源是无方向性天线,它在各个方向上、相同距离处产生的辐射场的大小是相等的,因此,它的归一化方向函数为F(,)=1 (126) 1.2.2 方向图式(121)定义了天线的方向函数,它与r及I无关。将方向函数用曲线描绘出来,称之为方向图(FileldPattern)。方向图就是与天线等距离处,天线辐射场大小在空间中的相对分布随方向变化的图形。依据归一化方向函数而绘出的为归一化方向图。变化及得出的方向图是立体方向图。对于电基本振子,由于归一化方向函数F(,)=|sin|,因此其立体方向图如图122所示。图122 基本振子立体方向图 1.2.3 方向图参数实际天线的方向图要比电基本振子的复杂,通常有多个波瓣,它可细分为主瓣、副瓣和后瓣,如图123所示。用来描述方向图的参数通常有:图123 天线方向图的一般形状 (1)零功率点波瓣宽度(Beam Widthbetween FirstNulls,BWFN)20E或20H(下标E、H表示E、H面,下同):指主瓣最大值两边两个零辐射方向之间的夹角。(2)半功率点波瓣宽度(HalfPower Beam Width, HPBW)20.5E或20.5H:指主瓣最大值两边场强等于最大值的0.707倍(或等于最大功率密度的一半)的两辐射方向之间的夹角,又叫3分贝波束宽度。如果天线的方向图只有一个强的主瓣,其它副瓣均较弱,则它的定向辐射性能的强弱就可以从两个主平面内的半功率点波瓣宽度来判断。(3)副瓣电平(Side Lobe Lever,SLL):指副瓣最大值与主瓣最大值之比,一般以分贝表示,即 (127) 式中,Sav,max2和Sav,max分别为最大副瓣和主瓣的功率密度最大值;Emax2和Emax分别为最大副瓣和主瓣的场强最大值。副瓣一般指向不需要辐射的区域,因此要求天线的副瓣电平应尽可能地低。(4)前后比:指主瓣最大值与后瓣最大值之比,通常也用分贝表示。1.2.4 方向系数上述方向图参数虽能从一定程度上描述方向图的状态,但它们一般仅能反映方向图中特定方向的辐射强弱程度,未能反映辐射在全空间的分布状态,因而不能单独体现天线的定向辐射能力。为了更精确地比较不同天线之间的方向性,需要引入一个能定量地表示天线定向辐射能力的电参数,这就是方向系数(Directivity)。方向系数的定义是:在同一距离及相同辐射功率的条件下,某天线在最大辐射方向上的辐射功率密度Smax(或场强|Emax|2的平方)和无方向性天线(点源)的辐射功率密度S0(或场强|E0|2的平方)之比,记为D。用公式表示如下:(128) 1.2.5 天线效率一般来说,载有高频电流的天线导体及其绝缘介质都会产生损耗,因此输入天线的实功率并不能全部地转换成电磁波能量。可以用天线效率(Efficiency)来表示这种能量转换的有效程度。天线效率定义为天线辐射功率Pr与输入功率Pin之比,记为A,即 (129) 1.2.6 增益系数方向系数只是衡量天线定向辐射特性的参数,它只决定于方向图;天线效率则表示了天线在能量上的转换效能;而增益系数(Gain)则表示了天线的定向收益程度。增益系数的定义是:在同一距离及相同输入功率的条件下,某天线在最大辐射方向上的辐射功率密度Smax(或场强|Emax|2的平方)和理想无方向性天线(理想点源)的辐射功率密度S0(或场强|E0|2的平方)之比,记为G。用公式表示如下: (1210) 1.2.7 天线的极化天线的极化(Polarization)是指该天线在给定方向上远区辐射电场的空间取向。一般而言,特指为该天线在最大辐射方向上的电场的空间取向。实际上,天线的极化随着偏离最大辐射方向而改变,天线不同辐射方向可以有不同的极化。所谓辐射场的极化,即在空间某一固定位置上电场矢量端点随时间运动的轨迹,按其轨迹的形状可分为线极化、圆极化和椭圆极化,其中圆极化还可以根据其旋转方向分为右旋圆极化和左旋圆极化。就圆极化而言,一般规定:若手的拇指朝向波的传播方向,四指弯向电场矢量的旋转方向,这时若电场矢量端点的旋转方向与传播方向符合右手螺旋,则为右旋圆极化,若符合左手螺旋,则为左旋圆极化。 1.2.8 有效长度一般而言,天线上的电流分布是不均匀的,也就是说天线上各部位的辐射能力不一样。为了衡量天线的实际辐射能力,常采用有效长度(Effective Length)。它的定义是:在保持实际天线最大辐射方向上的场强值不变的条件下,假设天线上的电流分布为均匀分布时天线的等效长度。通常将归算于输入电流Iin的有效长度记为lein,把归算于波腹电流Im的有效长度记为lem1.2.9 输入阻抗与辐射阻抗 天线通过传输线与发射机相连,天线作为传输线的负载,与传输线之间存在阻抗匹配问题。天线与传输线的连接处称为天线的输入端,天线输入端呈现的阻抗值定义为天线的输入阻抗(Input Resistance),即天线的输入阻抗Zin为天线的输入端电压与电流之比:(1211) 其中,Rin、Xin分别为输入电阻和输入电抗,它们分别对应有功功率和无功功率。1.2.10 频带宽度天线的所有电参数都和工作频率有关。任何天线的工作频率都有一定的范围,当工作频率偏离中心工作频率f0时,天线的电参数将变差,其变差的容许程度取决于天线设备系统的工作特性要求。当工作频率变化时,天线的有关电参数变化的程度在所允许的范围内,此时对应的频率范围称为频带宽度(Bandwidth)。根据天线设备系统的工作场合不同,影响天线频带宽度的主要电参数也不同。根据频带宽度的不同,可以把天线分为窄频带天线、宽频带天线和超宽频带天线。若天线的最高工作频率为fmax,最低工作频率为fmin,对于窄频带天线,常用相对带宽,即(fmax-fmin)/f0100%来表示其频带宽度。而对于超宽频带天线,常用绝对带宽,即fmax/fmin来表示其频带宽度。1.3 对称振子 如图131所示,对称振子(Symmetrical CenterFed Dipole)是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 图131 对称振子结构及坐标图 1.3.1 电流分布若想分析对称振子的辐射特性,必须首先知道它的电流分布。为了精确地求解对称振子的电流分布,需要采用数值分析方法,但计算比较麻烦。实际上,细对称振子天线可以看成是由末端开路的传输线张开形成,理论和实验都已证实,细对称振子的电流分布与末端开路线上的电流分布相似,即非常接近于正弦驻波分布,若取图141的坐标,并忽略振子损耗,则其形式为 (131) 式中,Im为电流波腹点的复振幅;k=2/=/c为相移常数。根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心点对称;超过半波长就会出现反相电流。1.3.2 对称振子的辐射场确定了对称振子的电流分布以后,就可以计算它的辐射场。欲计算对称振子的辐射场,可将对称振子分成无限多电流元,对称振子的辐射场就是所有电流元辐射场之和。在图132的坐标系中,由于对称振子的辐射场与无关,而观察点P(r,)距对称振子足够远,因而每个电流元到观察点的射线近似平行,因而各电流元在观察点处产生的辐射场矢量方向也可被认为相同,和电基本振子一样,对称振子仍为线极化天线。 图132 对称振子辐射场的计算 1.3.3 对称振子的输入阻抗由于对称振子的实用性,因此必须知道它的输入阻抗,以便与传输线相连。计算天线输入阻抗时,其值对输入端的电流非常敏感,而对称振子的实际电流分布与理想正弦分布在输入端和波节处又有一定的差别,因此若仍然认为振子上的电流分布为正弦分布,对称振子输入阻抗的计算会有较大的误差。为了较准确地计算对称振子的输入阻抗,除了采用精确的数值求解方法之外,工程上也常常采用“等值传输线法”。也就是说,考虑到对称振子与传输线的区别,可将对称振子经过修正等效成传输线后,再借助于传输线的阻抗公式来计算对称振子的输入阻抗。此方法计算简便,有利于工程应用。二、引向天线2.1引向天线简介引向天线又称八木天线,是上个世纪二十年代,日本东北大学的八木秀次和宇田太郎两人发明的。引向天线通常由一个有源振子、一个反射器及若干个引向器构成,反射器与引向器都是无源振子,所有振子都排列在一个平面内且相互平行。它们的中点都固定在一根金属杆上,除了有源振子馈电点必须与金属杆绝缘外,无源振子则都与金属杆短路连接。因为金属杆与各个振子垂直,所以金属杆上不感应电流,也不参与辐射。引向器天线的最大辐射方向在垂直于各个振子且由有源振子指向引向器的方向,所以它是一种端射式天线阵。一个典型的引向天线如图(3)所示。引向天线的优点是结构简单、馈电方便、重量轻、便于转动,并有一定的增益。缺点是颇带窄,增益不够高,因此常排成阵列使用。它在超短波和微波波段应用广泛。2.2引向天线工作原理一副典型的引向天线由一个有源的半波振子,一个(或几个)反向器和一个(或几个)引向器组成的线性端射天线。即有一个连接到传输线上的偶极子,还有若干个未连接、等距离或不等距离安装的平行阵列偶极子(作引向器和反向器)。引向器和反向器的作用是将有源振子的能量引到主辐射方向上去。有源阵子由于加有高频电动势,在周围八木天线空间产生电磁场,使得无源阵子中出现感应电动势,产生相对应的高频电流,这些电流在周围空间再衍生电磁场。由于存在无源阵子,根据互感原理在有源子上也产生相应的感应电流。所以有源阵子的总电流是激励电流和感应电流之和。当反射器的长度、引向器的长度和它到有源阵子的距离选得适当,使反射器和有源阵子所产生的电磁场在一个方向(反射器的一边)上相抵消,在相反方向上(引向器一边,主辐射方向)上相叠加,这样就可使天线得到单项辐射特性,使天线辐射可以在引向器方向上形成较尖锐的波束。八木天线的单元越多,方向性越强。但是单元的增加不与方向性成正比。单元过多时,导致工作频带变窄,整个天线尺寸也将偏大。三、引向天线的设计3.1设计目的(1) 巩固加深对引向天线的认识,提高综合运用天线电波等知识的能力;(2) 培养学生查阅参考文献,独立思考、设计、钻研电子技术相关问题的能力;(3) 通过实际制作安装电子线路,学会单元电路以及整机电路的调试与分析方法;(4) 掌握相关电子线路工程技术规范以及常规电子元器件的性能技术指标;(5) 了解电气图国家标准以及电气制图国家标准,并利用电子CAD/PROTEL正确绘制电路图;(6) 培养严肃认真的工作作风与科学态度,建立严谨的工程技术观念;(7) 培养工程实践能力、创新能力和综合设计能力。3.2 设计软件简介MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。3.3 天线参数设定影响八木天线方向性图和增益的因素有:1、引向器的间距选择2、反射器和有源阵子的间距选择3、引向器长度选择4、反射器长度选择等等。3.3.1 振子数的确定振子数目可根据天线的主瓣宽度或天线的增益算出,若选择前者,则可查阅相关资料,由八木天线参数关系图可的振子数目N,若选择后者,则可谓根据八木天线增益表,如图(3-1)所示。由图可知,振子数N为5时,增益已经很大,且随着振子数增加,增益已无明显增高,所以选择振子数N=5。图(3-1) 天线方向性与振子总数的关系3.3.2 有源振子的结构和尺寸有源振子可选单根半波振子或折合振子,一般长度取0.475波长。振子越粗,长度应短一些。对有源振子的基本要求是能与馈线有良好的匹配,为此,有源振子应设计为谐振长度,并把它的输入阻抗变换到等于或接近馈线特性阻抗的数值一般选取L=(0.460.49)。八木定向天线一般是用同轴电缆馈电的。当有源振子采用半波对称振子时,由于受无源振子的影响,其输入阻抗值较低,因此就需设法提高有源振子输入电阻,常用的方法是改用折合振子。适当选择折合振子的长度,两导体的直径比及其间距,可以有效地提高有源振子的输入电阻,并结合调整反射器及附近几个引向振子的尺寸,可以获得满意的驻波比。其次,由于折合振子等效半径加粗,对展宽阻抗频带宽也有利。当然,有源振子也可采用附加匹配器的对称振子形式。在这里选择有源振子L=0.46。3.3.3引向器长度选择引向器长度的选择有两种方案。一种是各引向器等长度,约取0.38-0.44波长。这种方案优点是加工和调整较为容易,但频带较窄。另一种是,各引向器长度随序号增加有长到短渐变。先取第一根引向器长度为0.46波长,以后的引向器长度则按2-3的缩短系数递减。这种方案的优点在于频带稍宽,但调试、加工麻烦。实用中都采用第一种方案。一般情况下选择L1=(0.80.9)La。3.3.4 反射器长度的选择反射器能保证天线单向辐射,反射器长度一般选在0.5-0.55之间。其长度不能短于设计最低频率相应的1/2。在这里选择反相器LR=0.5063.3.5引向器的间距、反射器与有源振子的间距选择引向器间距的选择有两种方案:一种是引向器间距不相等,随着引向器数量序号的增加,相邻引向器的间距加大;另一种是引向器间距相等。前一种方案调整麻烦,后一种方案调整简便,因此一般都采用等间距方案。引向器间距一般在0.15-0.4波长范围内选择。间距较大时,方向图主瓣较窄,输入阻抗的频率响应较平稳,但副瓣较大;间距选得小时,副瓣较低,抗干扰性能较好,但是增益和方向性差些。若考虑前者,间距可取0.3波长;若考虑后者,间距可取小于0.2波长。不管什么情况下,第一根引向器振子与有源振子之间的距离应取得更小一些,一般取(0.6-0.7)其他引向器间距。反射器于有源振子之间的距离一般去0.15-0.23波长。此间距主要影响八木天线的前后场强比和输入阻抗。当间距在0.15-0.17波长时,前后比较高,但天线的输入阻抗小(约15-20欧);当间距为0.2-0.23波长时,前后比较低,但天线输入阻抗大(约50-60欧),易与同轴电缆匹配。综合考虑本天线的特征,选取各振子间间距相等,即d=0.2比较合适。3.4 总体设计规划经过前面的概述,已经具备了设计本次五单元八木天线的所有信息,现在将设计天线的总体参数列出如下:有源振子长度:La=0.50 有缘振子半径:a=0.0030反相器长度:L=0.9 引向器长度:Lr=0.510 各振子间间距:d=0.2四、MATLAB仿真4.1 MATLAB仿真源程序设波长=1m,其MATLAB仿真程序如下:11clearlambda=1; %波长k=2*pi/lambda; %自由空间相移常数u=4*pi*10(-7); %自由空间导磁率e=8.854*10(-12); %自由空间介电常数a=0.0030*lambda; %有缘振子半径LR=0.9*lambda; %反相器长度L=0.50*lambda; %有源振子长度LD=0.510*lambda; %引向器长度SR=0.2*lambda; %各振子间间距SD=0.2*lambda;w=k/sqrt(u*e);y=120*pi;n=6;N=5; %振子数目dlr=LR/(N+1); dl=L/(N+1); dld=LD/(N+1); point=zeros(n*(2*N+1),4);mid=zeros(n*N,3);for ii=1:2*N+1 point(ii,1:3)=-SR LR/2-ii*LR/(2*(N+1) dlr; if rem(ii+point(ii,4),2)=0 mid(ii+point(ii,4)/2,:)=point(ii,1:3); endendfor ii=2*N+1+1:2*(2*N+1) point(ii,2:4)=L/2-(ii-(2*N+1)*L/(2*(N+1) dl 1; if rem(ii+point(ii,4),2)=0 mid(ii-point(ii,4)/2,2:3)=point(ii,2:3); endendfor ii=2*(2*N+1)+1:3*(2*N+1) point(ii,:)=SD LD/2-(ii-2*(2*N+1)*LD/(2*(N+1) dld 2; if rem(ii+point(ii,4),2)=0 mid(ii-point(ii,4)/2,:)=point(ii,1:3); endendfor ii=3*(2*N+1)+1:4*(2*N+1) point(ii,:)=2*SD LD/2-(ii-3*(2*N+1)*LD/(2*(N+1) dld 3; if rem(ii+point(ii,4),2)=0 mid(ii-point(ii,4)/2,:)=point(ii,1:3); endendfor ii=4*(2*N+1)+1:5*(2*N+1) point(ii,:)=3*SD LD/2-(ii-4*(2*N+1)*LD/(2*(N+1) dld 4; if rem(ii+point(ii,4),2)=0 mid(ii-point(ii,4)/2,:)=point(ii,1:3); endendfor ii=5*(2*N+1)+1:6*(2*N+1) point(ii,:)=4*SD LD/2-(ii-5*(2*N+1)*LD/(2*(N+1) dld 5; if rem(ii+point(ii,4),2)=0 mid(ii-point(ii,4)/2,:)=point(ii,1:3); endendV=zeros(n*N,1);V(N+(N+1)/2)=1;U=ones(n*N,1);psi=zeros(n*(2*N+1);for jj=1:n*(2*N+1) for kk=1:n*(2*N+1) if jj=kk psi(jj,kk)=log(point(jj,3)/a)/(2*pi*point(jj,3)-(j*k)/(4*pi); else psi(jj,kk)=exp(-j*k*sqrt(point(kk,1)-point(jj,1)2+(point(kk,2)-point(jj,2)2)/(4*pi*sqrt(point(kk,1)-point(jj,1)2+(point(kk,2)-point(jj,2)2); end endendZ=zeros(n*N);for pp=1:n*N for qq=1:n*N Z(pp,qq)=j*w*u*point(pp,3)*point(qq,3)*psi(2*pp+point(pp,4),2*qq+point(qq,4)+(psi(2*pp+point(pp,4)+1,2*qq+point(qq,4)+1)-psi(2*pp+point(pp,4)+1,2*qq+point(qq,4)-1)-psi(2*pp+point(pp,4)-1,2*qq+point(qq,4)+1)+psi(2*pp+point(pp,4)-1,2*qq+point(qq,4)-1)/(j*w*e); endendsi=ZV; %Int=1:n*N;figure(1);plot(t,abs(si),ylabel(I),title(电流分布)in=U*(ZV);i=V*si;Zin=1/itheta=(-pi:pi/100:pi)+eps;for m=1:length(theta) E1=-j*w*u*exp(-j*k).*exp(j*k.*sqrt(mid(:,1).2+mid(:,2).2).*cos(abs(atan(mid(:,1)./(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 材料人工协议书
- 电信租机协议书
- 宁波拆迁协议书
- 合作经营协议书合同范本
- 山东省武城县联考2026届数学九年级第一学期期末统考试题含解析
- 浇冰师岗位应急处置技术规程
- 2025国内产品采购协议
- 2026届浙江省杭州市景成实验中学数学七上期末监测试题含解析
- 专职消防队培训知识内容课件
- 安徽宿州埇桥区2026届八年级数学第一学期期末质量跟踪监视试题含解析
- 2025年下半年拜城县招聘警务辅助人员(260人)考试模拟试题及答案解析
- 2025年杭州上城区总工会公开招聘工会社会工作者9人笔试参考题库附答案解析
- 百师联盟2026届高三上学期9月调研考试数学试卷(含答案)
- 2025年互联网+特殊教育行业研究报告及未来发展趋势预测
- 医院信息安全保密培训课件
- 物流紧急事件应急预案方案
- 幼儿创意玉米课件
- 2025年智能焊接机器人产业发展蓝皮书-GGII高工咨询
- 神舟十号课件
- 冷却塔填料更换施工方案
- 运输公司环保措施方案(3篇)
评论
0/150
提交评论