专家与决策支持系统__第二章.ppt_第1页
专家与决策支持系统__第二章.ppt_第2页
专家与决策支持系统__第二章.ppt_第3页
专家与决策支持系统__第二章.ppt_第4页
专家与决策支持系统__第二章.ppt_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章模型辅助决策支持 2 1决策概述2 2决策过程2 3决策体系2 4模型的决策支持2 5数学模型的决策支持2 6多模型辅助决策支持 2 1决策概述 一 决策概念 决策 是指个人或集体为了达到或实现某一目标 借助一定的科学手段和方法 从若干备选方案中选择或综合成一个满意合理的方案 并付诸实施的过程 决策定义的理解 找出制定决策的根据 即收集信息 并根据手头上的信息制定可能的行动方案 在诸行动方案中进行抉择 即根据当时的情况和对未来发展的预测 从各个备选方案中选定一个方案 对已选择的方案及其实施进行评价 2 1决策概述 二 决策的特征 目的性超前性创造性管理性 2 1决策概述 三 科学决策 科学决策是决策者依据科学方法 科学程序 科学手段所进行的决策工作 科学决策的主要特点是 有科学的决策体系和运作机制 决策体系包括决策系统 参谋系统 信息系统 执行系统和监督系统 遵循科学的决策过程 决策过程包括 提出问题和确定目标 拟定决策方案 决策方案的评估和优选 决策的实施和反馈 重视 智囊团 在决策中的参谋咨询作用 运用现代科学技术和科学方法 2 1决策概述 四 决策原则 在决策全过程中需要遵循的原则 实事求是原则 根据实际情况确定方针 外脑 原则 重视发挥参谋 智囊作用 经济原则 力求节约财力 人力 物力等 在确定决策目标时需遵循的原则差距原则 决策目标与现实之间存在一定差距 紧迫原则 解决目标与现实之间的差距具有紧迫性 力及 原则 达到目标解决差距应该是力所能及的 是主客观条件所允许的 有解决的现实可能性 2 1决策概述 四 决策原则 在制定备选方案时遵循的原则瞄准原则 备选方案必须瞄准决策目标 差异原则 各备选方案之间必须有差异 在优选方案时遵循的原则 两最 原则 最优方案应是效益最大 可靠性最大 损失最小 风险性最小的决策方案 预后原则 选定的方案应具有应变能力和预防措施 时机原则 决策应在信息充分或根据充分的时机作出 不能超前或拖后 在决策实施过程中需遵循的原则跟踪原则 决策付诸实施后要随时检查验证 反馈原则 一旦发生决策与客观情况不适应之处 要及时采取措施 进行必要修改和调整 2 2决策过程 西蒙将决策过程分为四大步骤 确定决策目标 拟定各种被选方案 从各种被选方案中进行选择 执行方案 信息的收集 加工 传输与利用贯穿着决策各阶段的工作过程 现代管理的核心是决策 决策的基础是信息 2 2决策过程 2 3决策体系 决策体系的定义 指决策整个过程中的各个层次 各个部门在决策活动中的决策权限 组织形式 机构设置 调节机制 监督方法的整个体系 决策体系由决策系统 参谋 智囊 系统 信息系统 执行系统和监督系统组成的一个统一整体 2 3决策体系 决策体系运行过程 参谋系统利用信息系统制定决策方案提供给决策系统 决策系统利用信息系统提供的信息对参谋系统提供的方案进行决策 决策系统的决策指令 在监督系统的监督下 由执行系统贯彻执行 执行的情况和结果 又经过智囊系统和信息系统反馈到决策系统 智囊系统根据新情况给决策系统提供补充或修改方案 决策系统对修改方案进行决策 作出修订指示 再由执行系统执行 决策体系的运行图 2 4模型的决策支持 一 模型概念模型是对现实世界的事物 现象 过程或系统的简化描述 2 4模型的决策支持 二 模型分类按模型的表现可分为 物理模型 也称为实体模型实物模型类比模型数学模型 是用数学语言描述的一类模型结构模型 是反映系统的结构特点和因果关系的模型仿真模型 通过计算机运行程序所表达的模型 2 4模型的决策支持 三 数学模型的类型 原理性模型 如 牛顿力学三定律 系统学模型 如 系统动力学 灰色系统 最优控制等 规划模型 如 线性规划 非线性规划 动态规划 目标规划 运输问题等 预测模型定性预测法有 专家调查法 情景分析法 主观概率法等 定量预测法有 趋势法 回归法 平滑法等 管理决策模型 关键路径法CPM 计划评审技术PERT 风险评审技术VERT 层次分析法 仿真模型 蒙特卡罗法 微观分析模拟等 计量经济模型 经济计量法 投入产出法 可行性分析 价值工程等 2 4模型的决策支持 四 建模 用模型来描述系统的因果关系或相互关系的过程建模的手段和方法多种多样同一系统可用不同的模型来描述需要适当考虑模型简化和结果的可靠性 2 4模型的决策支持 四 建模数学模型的建模步骤 模型准备模型假设建立模型模型求解模型分析模型检验 2 4模型的决策支持 五 模型求解 模型的解是某选定方案中决策变量的一组特定值模型求解是从已找到的行动方案集合中 搜索适当的行动方案 用于解决问题 2 4模型的决策支持 五 模型求解模型求解方法 分析技术 用数学公式直接得出最优解或预测结果算法 是一步一步地求得最优解的搜索过程 产生解并检验是否有可能对其进行改进盲目搜索 盲目搜索是一种任意的 没有向导的搜索方法目标 在搜索中需要给出期望解的描述完全穷举 通过比较所有方案 发现最优解部分搜索 一直找到足够好的解为止启发式搜索 在许多应用中有可能找到指导搜索过程的规则 而减少不必要的搜索次数 2 5数学模型的决策支持 一 数学模型的决策支持问题数学规划模型的决策支持线性规划模型多模型辅助决策支持 2 5数学模型的决策支持 二 线性规划模型线性规划是用来处理线性目标函数和线性约束条件的一种颇有成效的最优化方法 解决的两类典型问题 在给出一定的人力 物力 财力条件下 如何合理利用它们完成最多的任务或得到最大的效益 在完成预定目标的过程中如何以最少的人力 物力 财力等资源去实现目标 2 5数学模型的决策支持 二 线性规划模型线性规划模型的一般形式 目标 min 或max 约束条件 s t bixj 0其中 z为目标函数 xj为决策变量 aij bi和cj分别为消耗系数 需求系数和收益系数 线性规划模型的决策支持包括两方面 模型求解的最优解的决策支持模型的what if分析的决策支持 2 5数学模型的决策支持 模型求解的最优解的决策支持线性规划模型 最优解 单纯形法 这是结构化决策 实际的决策问题 线性规划模型 人选定参数 建立目标函数和约束方程 这是非结构化决策 实际的决策问题 最优决策 人和计算机 这是半结构化决策 2 5数学模型的决策支持 模型的what if分析的决策支持what if分析 if 线性规划模型中的参数变化 最优解的怎样改变 what 分析模型中参数的精确程度对最优解的影响 有效地指导决策者作出最终的决策 2 5数学模型的决策支持 线性规划模型的决策支持实例某公司研制了两种新产品 玻璃门 和 铝框窗 工厂A每周大约有4个小时用来生产玻璃门 工厂B每周大约有12个小时用来生产铝框窗 工厂C每周大约有18个小时用来生产玻璃门和铝框窗 生产每扇门工厂A C分别需要1 3个小时 生产每扇门工厂B C都需要2个小时 玻璃门的单位利润估计为 300元 玻璃窗的单位利润估计为 500元 2 5数学模型的决策支持 最优解 求在生产能力允许的条件下 达到最大利润的最优解 设每周生产新门的数量为x 生产新窗的数量为y 该问题的线性规划模型的数学方程为 利润 P 300 x 500y 工厂A约束x 4工厂B约束2y 12工厂C约束3x 2y 18x 0y 0 2 5数学模型的决策支持 利用线性规划模型的求解方法可得到最优解是 x 2 y 6 p 3600线性规划模型为决策者提供了最优决策 它是公司领导层是否对新产品生产的重要决策支持 2 5数学模型的决策支持 what if分析单个产品的单位利润的估计值不准确时 最优解怎样变化 两个产品的单位利润的估计值不准确时 最优解怎样变化 单个工厂生产新产品时间改变后 最优解怎样变化 三个工厂生产新产品时间改变后 最优解怎样变化 2 5数学模型的决策支持 问题举例 假设门的单位利润 px 的估计不准确 最优解怎样变化 问题转换 最优解不发生改变 门的单位利润 px 参数的最优域 即可能的最大值与可能的最小值 是多少 求解方法 代入不同的px值 求解线性规划模型的解 得数据如下页数据表 2 5数学模型的决策支持 从上表可见px的改变而不改变最优解 x y 的最小值与最大值 即最优域为 0 px 700同样方法可求出py的最优域值为 py 200其它what if分析的问题在此不进行讨论 2 5数学模型的决策支持 利用模型解决决策问题 即建立决策方案 有两种情况 利用标准数学模型 建立决策方案 组合标准数学模型 建立决策方案 对于复杂的决策问题的方案需要考虑用多个标准数学模型的组合来完成 多模型辅助决策支持 模型的组合分两种 并行组合与串行组合 并行组合 各模型所需输入数据是相同的 但输出数据的结构 变量 数组等 相同 数值不同 串行组合 一个模型的输出为另一个模型的输入 串并组合 模型之间既有串行组合 也有并行组合 多模型辅助决策支持 在对一个实际决策问题做方案时 往往会采用对同一问题的多个不同模型进行计算 然后对这些模型的计算结果进行选择或者进行综合 得到一个比较合理的结果 这是一种采用多模型并行组合的决策方案 实例 某县对粮食产量进行规划 预测2010年的粮食总产量 为此 利用该县从1990年到2000年各年的粮食产量数据 按照不同预测模型的要求 分别建立了五个不同的数学模型 并分别进行了预测计算 多模型辅助决策支持 1 灰色模糊预测模型其中x1 x2 x3 x4分别为 良种面积 汗涝保收面积 化肥施用量 农药用量 预测2010年总产量为15 9亿斤 2 生长曲线预测模型预测2010年总产量为15 4亿斤 多模型辅助决策支持 3 时间趋势预测模型预测2010年总产量为17 5亿斤 4 多元回归预测模型其中x1 x2 x3 x4 t x6分别为 化肥 种子 水 种粮面积 时间 政策因素 预测2010年总产量为16 9亿斤 多模型辅助决策支持 5 三次平滑预测模型预测2010年总产量17 5亿斤 归纳各模型预测结果在如下范围 即 2010年粮食总产量 14 17 5亿公斤 多模型辅助决策支持 决策者分析影响粮食产量的主要因素 投入水平 科技水平 生产条件 并集体讨论 共同决策该县在2010年预测值 2010年粮食总产量为15亿斤 多模型辅助决策支持 模型串行组合方案的决策支持书上实例 略 模型串并组合 多模型辅助决策支持 2 灰色 神经网络组合预测模型 3 灰色预测模型 灰色预测模型 传统GM 1 1 模型 适合对按等比递增规律变化的序列进行建模 无偏GM 1 1 模型 适合对指数序列进行建模 改进的GM 1 1 模型 多用在噪声多 且精度要求较高的序列预测场合 但其计算代价要大得多 改进的GM 1 1 模型的主要改进 选用Gauss Legendre求积公式和相邻最近插值法求背景值 选用折扣最小一乘法和蚁群优化算法来拟合参数 4 神经网络预测模型 神经网络预测模型 MBP 计算代价小 无动态特性 标准Elman

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论