




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题12 空间几何体的三视图表面积及体积【命题热点突破一】三视图与直观图1一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样即“长对正、高平齐、宽相等”2由三视图还原几何体的步骤一般先从俯视图确定底面再利用正视图与侧视图确定几何体例1、【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A) (B) (C) (D)【答案】C【方法技巧】空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果【变式探究】 (1)一个几何体的三视图如图所示,则该几何体的直观图可以是()(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()答案 (1)D(2)D解析(1)由俯视图,易知答案为D.(2)如图所示,点D1的投影为C1,点D的投影为C,点A的投影为B,故选D.【命题热点突破二】 几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧例2、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )(A) (B) (C) (D)【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和故选A【方法技巧】(1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差求解时注意不要多算也不要少算【变式探究】在三棱柱ABCA1B1C1中,BAC90,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是AB,BC,B1C1的中点,则三棱锥PA1MN的体积是_答案 解析由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱,又AA1平面PMN,VA-PMN,VA-PMN1,故.【命题热点突破三】 多面体与球与球有关的组合体问题,一种是内切,一种是外接解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径例3、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )(A) (B) (C) (D)【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和故选A【方法技巧】三棱锥PABC可通过补形为长方体求解外接球问题的两种情形:(1)P可作为长方体上底面的一个顶点,A、B、C可作为下底面的三个顶点;(2)PABC为正四面体,则正四面体的棱都可作为一个正方体的面对角线【变式探究】在三棱锥ABCD中,侧棱AB,AC,AD两两垂直,ABC,ACD,ABD的面积分别为,则三棱锥ABCD的外接球体积为_.答案 解析如图,以AB,AC,AD为棱把该三棱锥扩充成长方体,则该长方体的外接球恰为三棱锥的外接球,三棱锥的外接球的直径是长方体的对角线长据题意解得长方体的对角线长为,三棱锥外接球的半径为.三棱锥外接球的体积为V()3.【高考真题解读】1、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )(A) (B) (C) (D)【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和故选A2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A) (B) (C) (D)【答案】C3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B. C.D.【答案】A【解析】分析三视图可知,该几何体为一三棱锥,其体积,故选A.4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A) (B) (C)90 (D)81【答案】B【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积,故选B5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A) (B) (C) (D)【答案】C6.【2016高考浙江理数】已知互相垂直的平面交于直线l.若直线m,n满足 则( )Aml Bmn Cnl Dmn【答案】C【解析】由题意知,故选C7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .【答案】【解析】由三棱锥的正视图知,三棱锥的高为,底面边长为,2,2,所以,该三棱锥的体积为.8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是 cm3.【答案】 【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为1(2015广东,8)若空间中n个不同的点两两距离都相等,则正整数n的取值()A大于5 B等于5C至多等于4 D至多等于3解析当n3时显然成立,故排除A,B;由正四面体的四个顶点,两两距离相等,得n4时成立,故选C.答案C2(2015浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A8 cm3 B12 cm3 C. cm3 D. cm33(2015新课标全国,11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示若该几何体的表面积为1620,则r()A1 B2 C4 D8解析由题意知,2r2r2r2rr2r24r24r25r21620,解得r2.答案B4(2015天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为_m3. 解析由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1,圆锥的高为1,圆柱的高为2,所以该几何体的体积V2121122 m3.答案5(2015陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为()A3 B4 C24 D346.(2015安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是()A1 B2 C12 D2解析由空间几何体的三视图可得该空间几何体的直观图,如图,该四面体的表面积为S表2212()22,故选B.答案B7(2015新课标全国,9)已知A,B是球O的球面上两点,AOB90,C为该球面上的动点,若三棱锥OABC体积的最大值为36,则球O的表面积为()A36 B64 C144 D256答案C8(2015山东,7)在梯形ABCD中,ABC,ADBC,BC2AD2AB2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D2解析如图,由题意,得BC2,ADAB1.绕AD所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体所求体积V122121.答案C9(2015重庆,5)某几何体的三视图如图所示,则该几何体的体积为()A. B.C.2 D.2解析这是一个三棱锥与半个圆柱的组合体,V1221,选A.答案A10(2015新课标全国,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为()A. B. C. D.解析如图,由题意知,该几何体是正方体ABCDA1B1C1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 减灾日课件教学课件
- 凉菜知识培训材料课件
- 净水器培训知识课件
- 助贷业务知识培训课件
- 硅油物理性能与温度关系实验报告
- 医院岗位职责说明书编写规范
- 助听器销售知识培训课件
- 中小学体育课教学改革研究报告
- 高一上学期英语阅读技巧与练习辅导
- 诗歌朗诵与护理职业精神培养
- GB/T 24423-2009信息与文献文献用纸耐久性要求
- GB 4706.13-2004家用和类似用途电器的安全制冷器具、冰淇淋机和制冰机的特殊要求
- 《组织行为学》第十一章 组织结构与组织设计
- 2023年武汉新华书店股份有限公司招聘笔试题库及答案解析
- (通用版)保安员考试题库及答案
- 带状疱疹护理查房课件
- 药品生产质量管理规范(2010版)(含13个附录)
- 《食用菌工厂化栽培》课程教学大纲
- 民法典合同编之合同的变更和转让重点条文案例详细解读PPT
- 中国大地财产保险股份有限公司车险核保人员技术认证定级考试大纲
- 高频振荡(HFOV)通气讲解课件
评论
0/150
提交评论