




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
抽象函数的周期与对称轴一. 教学内容抽象函数的周期与对称轴二. 教学重、难点重点:抽象函数周期与对称轴的相关结论。难点:结论的推导证明,利用结论解决问题。三. 具体内容1. 若则的周期为T。2. 若则的周期为证:令 3. 则的周期证:令 令 由得: 4. 若则图象的对称轴为证:要证原结论成立,只需证令代入则5. 若则的图象,以为对称中心。证:方法一:要证原结论成立只需证令代入则方法二:设它的图象为C 则P关于点的对称点 【典型例题】例1 对于,有下列命题。(1)在同一坐标系下,函数与的图象关于直线对称。(2)若且均成立,则为偶函数。(3)若恒成立,则为周期函数。(4)若为单调增函数,则(且)也为单调增函数,其中正确的为?解:(2)(3)例2 若函数有求。解:,知的图象关于对称而的对称中心 则例3 设是定义在R上的函数,均有当时,求当时,的解析式。解:由有得设则 时例4 已知是定义在R上的函数且满足,当时有则(1)是周期函数且周期为2(2)当时,(3)其中正确的是?解:(1)(2)(3)例5 已知满足,当时,且,若,求、的大小关系?解:由已知得,对称轴 也为一条对称轴 由 , 例6 定义在R上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,求的值。解:例7 设定义在R上,有且当时,(1)求证:且当时,(2)求证:在R上递减。解:(1)在中,令,得 设,则令,代入条件式有而 (2)设则 令,则代入条件式得即 在R上递减【模拟试题】一. 选择1. 已知满足,且是奇函数,若则( )A. B. C. D. 2. 已知是定义在R上的偶函数,且对任何实数均成立,当时,当时,( )A. B. C. D. 3. 若函数,都有则等于( )A. 0 B. 3 C. D. 3或4. 函数是( )A. 周期为的奇函数B. 周期为的偶函数C. 周期为的奇函数D. 周期为的奇函数5. 的图象关于y轴对称的充要条件是( )A. B. C. D. 6. 如果且则可以是( )A. B. C. D. 7. 为偶函数的充要条件是( )A. B. C. D. 8. 设是R上的奇函数,当时,则( )A. 0.5 B. C. 1.5 D. 9. 设,有那么( )A. B. C. D. 10. 定义在R上,则与的图象关于( )A. 对称 B. 对称 C. 对称 D. 对称二. 填空1. 是R上的奇函数,且,则 。2. 函数的图象的对称轴中最靠近y轴的是 。3. 为奇函数,且当时,则当时 。4. 偶函数的定义域为R,且在上是增函数,则(1)(2)(3)(4)中正确的是 。三. 解答题1. 设是定义在R上的偶函数,图象关于对称,、都有且(1)求、(2)证明:是周期函数2. 如果函数的图象关于和都对称,证明这个函数满足3. 已知对任意实数t都有,比较与的大小。4. 定义在实数集上的函数,对一切实数x都有成立,若方程仅有101个不同实根,求所有实根之和。【试题答案】一.1. B 2. C 3. D 4. C 5. C 6. D 7. B 8. B9. A 10. D二.1. 0 2. 3. 4.(2)三.1. 解:(1) 都有 , (2)由已知关于对称 即, 又由是偶函数知, ,将上式中以代换得 是R上的周期函数,且2是它的一个周期2. 证: 关于和对称 , 令,则 即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广德电梯安全管理培训课件
- ICSN3250-hydrochloride-生命科学试剂-MCE
- 安全培训效果评估课件
- 2025河南驻马店市新蔡县公益性岗位招聘7人模拟试卷及一套答案详解
- 安全培训效果评价结论表课件
- 2025广东中山市粮食储备经营管理有限公司招聘5人考前自测高频考点模拟试题及完整答案详解
- 2025年度上半年河北唐山市消防救援支队政府专职消防队员招聘113人模拟试卷附答案详解(完整版)
- 2025贵州岑巩县医共体总医院招聘乡村医生模拟试卷及答案详解(各地真题)
- 2025辽宁铁岭市调兵山市招聘临床医师10人模拟试卷附答案详解(典型题)
- 2025包头市昆都仑区发展和改革委员会竞争性比选工作人员的考前自测高频考点模拟试题及答案详解一套
- 轻钢屋面工程施工方案
- DB3702T 31-2023 未成年人家庭监护能力评估工作规范
- 2024-2025年历年成人高考民法真题及复习资料
- 幼儿园课程教研活动
- 幼儿烫伤课件教学课件
- 国家职业技术技能标准 6-29-01-01 砌筑工 人社厅发20235号
- (完整版)新概念英语第一册单词表(打印版)
- 部编版一年级语文上册全册教案
- 离婚协议书2个儿子的模板
- Unit 2 Success Lesson 1 Money vs Success 课件-2023-2024学年高二英语北师大版(2019)选择性必修第一册
- 人工智能训练师理论知识考核要素细目表二级
评论
0/150
提交评论