



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程的解法复习课教学目标:掌握了解一元二次方程的四种方法以及各种解法的特点,会根据不同方程的特点选用恰当的方法,从而准确、快速地解一元二次方程。重点:会根据不同方程的特点选用恰当的方法,准确、快速地解一元二次方程。难点:通过揭示各种解法的本质联系,渗透降次化归的数学思想。教学过程:一、介绍本节课的重要性,出示教学目标。教师口述:同学们,我们本节课一起来复习一元二次方程的解法。一元二次方程在中考中占有比较重要的地位,通过本节课的复习,我们要掌握解一元二次方程的四种方法以及各种解法的特点,会根据不同方程的特点,选用恰当的方法,从而准确、快速地解一元二次方程。二、检查课前练习完成情况,并讨论,讲解课前练习题三、讲解四种解法的特点1、直接开平方法,x2=p(p0)或(x+a)2=p(p0) 顺口溜:直接开方不万能,条件符合也能行,一边开方一边常,然后开方就能行,开方时,要注意,正负符号要弄清。(2)因式分解法解一元二次方程的理论依据为:若AB=0,则A0或B0。在用因式分解法解一元二次方程时,应把一端化成乘积的形式,先看有没有公因式,如果没有公因式,再看是否可用完全平方公式或平方差公式,或者是十字相乘法,为了方便学生的记忆,总结了一个顺口溜:因式分解很简单,一端乘积一端零,用时先把因式找,再看公式通不通,这个方法不万能,用时看准才能行。3、在学生回答的基础上,指出配方法是直接开方法的“升级版”, 1、先把二次项系数化为1,再把常数项移到等号的另一端。2、接着在方程的两边同时加上一次项系数一半的平方进行配方。3、最后进行开方。为了方便学生记忆,总结了一个顺口溜:配方法,可通用,配方过程可不轻,一化二移三配方,然后开方才能行,配方时,要注意,同加一系半之方。(4)回顾推导求根公式的过程,请填写出求根公式 公式法是“盗”用了配方法的结果,在应用公式法来解一元二次方程的过程中:1、应先把一元二次方程化为一般式,即2、再求出判别式的值,若0,才能把a、b、c及b2-4ac的值带入求根公式,从而得到方程的解为了方便学生的记忆,总结了一个顺口溜:公式法,虽万能,记准公式才能行,用时先化一般式,a、b和c要弄清,还有一个判别式,小于零了可不行。“一元二次方程的解法”复习课练习题课前练习:1、把方程(x+2)(x-3)=-5化为一般形式是 。2、方程2 x=8的根是 ;3、方程x-2x+1=4的根是 ;4、方程x-x+1=0的根是 ;5、用 法解方程(x-2)=2x-4比较简便。 方法小结:一元二次方程的四种方法,同学们通常是如何选择的呢?你能总结一下吗?(1)“直接开平方法”:(2) “配方法”:(3)“公式法”:(4)“分解因式法”:三、课堂练习1、已知一元二次方程的两根是x = -3,x = 4,则这个方程可以是( )A、(x-3)(x+4)=0 B、(x+3)(x+4)=0 C、(x-3)(x-4)=0 D、(x+3)(x-4)=02、一元二次方程x-3 x=0的根是( )A、0 B、0或3 C、3 D、0或 -33、方程2 x(x-3)=5(x-3)的解是( )A、x = B、x =3 C、x =3 或x = D、 x = 4、用配方法解一元二次方程x+8 x+7=0,则下列方程变形正确的是( )A、(x-4)=9 B、(x+4)=9 C、(x+8)=57 D、(x-8)=165、解下列方程:(1)4(x+3)=100 (2)3 y+10 y+5=0(3)x+4 x-896=0 (4)7 x(5 x-2)-6(2-5 x)=0(5)x-2 x-3=0 (6)4x2-3x-1=x-2 (7)(x23x)22(x23x)8=0 (8)(2x23x)2+5(2x23x)+4=0课后练习题; 一、关于x的方程(m1)x22 xm20为一元二次方程,求m的取值范围。二、用配方法证明,不论x取任何实数时,代数式x2-5x+7的值总大于0,再求出当x取何值时,代数式的值最小?最小值是多少?三、 用适当的方法解下列一元二次方程。1、 2、 3、 4、 5、 6、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年初级网络安全工程师面试题库与答案解析
- 2025年乡镇畜牧站动物疫病防控员招聘考试知识点详解与题型预测
- 3.2 等式的基本性质(第3课时)说课稿 2024-2025学年湘教版(2024)七年级数学上册
- 2025年创业实战手册创业者必-备知识手册与预测题集
- 2024-2025学年学年高中地理 4.2《人地关系思想的演变》说课稿 湘教版必修2
- 北海二手房买卖合同5篇
- 业务数据分级管理办法
- 2025年货运丛业资格证考试题库答案
- 2025临床护理输血试题及答案
- 2025年职业健康培训试题及答案
- 人美版九年级上册初中美术全册教案
- 甲状腺手术甲状旁腺保护
- 2023年法律职业资格《主观题》真题及答案
- 施工项目部会议管理制度
- 2024-2025学年安徽省八年级语文上册第一次月考试卷04
- 欢迎一年级新生入学课件
- 译林版七年级上册英语阅读理解专项练习题100篇含答案
- 单位委托员工办理水表业务委托书
- 矿山生态修复监理工作资料编制内容和要求、施工监理主要工作程序框图、工程施工与监理表式
- 夫妻婚内财产协议书(2024版)
- 小菜园租赁合同范本
评论
0/150
提交评论