




免费预览已结束,剩余13页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
毕 业 论 文题 目 数控加工 专 业 数控加工与维护工程 班 级 07大专数控(一)班 学 生 随波逐流 指导教师 杨 红 朗 西安工业大学函授部二 0 0 九 年摘 要对加工中心刀具提出系统的命名方法,使刀具名兼具刀具的特征。使我们一看到刀具名就对刀具概况一目了然,既方便了操作又便于管理,节省了大量时间多重复工作。对经常更换加工对象的单位,特别适用。在全功能数控机床中,数控系统有刀具补偿功能,可按工件轮廓尺寸进行编制程序,建立、执行刀补后,数控系统自动计算,刀位点自动调整到刀具运动轨迹上。 经济型数控机床结构简单,售价低,在生产企业中有一定的拥有量。在经济型数控机床系统中,如果没有刀具补偿功能,只能按刀位点的运动轨迹尺寸编制加工程序,这就要求先根据工件轮廓尺寸和刀具直径计算出刀位点的轨迹尺寸。因此计算量大、复杂,且刀具磨损、更换需重新计算刀位点的轨迹尺寸,重新编制加工程序。刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便,刚性好,耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。刀具补偿是数控中的重要,它决定工件的精度高低,半径长度的补偿弥补了这一缺陷,提高了效益,增加了经济效益给工厂带来了利益。合理的选择刀具,对刀具的补偿,合理的切削用量综合起来,加工出精度高的工件。关键词:刀具,刀具补偿,切削用量 目 录第一章 数控技术1.1数控技术31.2坐标系/对刀点/换刀点31.3常用基本指令6 1.4刀具半径,长度补偿设置8第二章 加工工序及切削用量2.1确定加工顺序和工序12 2.2切削用量的确定13 结束语致谢 参考文献第一章 数控技术1.1数控技术数控技术,简称“数控”。英文:Numerical Control(NC)。是指用数字、文字和符号组成的数字指令来实现一台或多台机械设备动作控制的技术。它所控制的通常是位置、角度、速度等机械量和与机械能量流向有关的开关量。数控的产生依赖于数据载体和二进制形式数据运算的出现。1908年,穿孔的金属薄片互换式数据载体问世;19世纪末,以纸为数据载体并具有辅助功能的控制系统被发明;1938年,香农在美国麻省理工学院进行了数据快速运算和传输,奠定了现代计算机,包括计算机数字控制系统的基础。数控技术是与机床控制密切结合发展起来的。1952年,第一台数控机床问世,成为世界机械工业史上一件划时代的事件,推动了自动化的发展。现在,数控技术也叫计算机数控技术,目前它是采用计算机实现数字程序控制的技术。这种技术用计算机按事先存贮的控制程序来执行对设备的控制功能。由于采用计算机替代原先用硬件逻辑电路组成的数控装置,使输入数据的存贮、处理、运算、逻辑各种 制机能的实现,均可通过计算机软件来完成。数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的趋势。1.2坐标系/对刀点/换刀点 数控机床的加工是由程序控制完成的,所以坐标系的确定与使用非常重要。根据ISO841标准,数控机床坐标系用右手笛卡儿坐标系作为标准确定。数控车床平行于主轴方向即纵向 Z轴,垂直于主轴方向即横向为X轴,刀具远离工件方向为正向。 数控车床有三个坐标系即机械坐标系、编程坐标系和工件坐标系。机械坐标系的原点是生产厂家在制造机床时的固定坐标系原点,也称机械零点。它是在机床装配、调试时已经确定下来的,是机床加工的基准点。在使用中机械坐标系是由参考点来确定的,机床系统启动后,进行返回参考点操作,机械坐标系就建立了。坐标系一经建立,只要不切断电源,坐标系就不会变化。编程坐标系是编程序时使用的坐标系,一般把我们把Z轴与工件轴线重合,X轴放在工件端面上。工件坐标系是机床进行加工时使用的坐标系,它应该与编程坐标系一致。能否让编程坐标系与工坐标系一致,使操作的关键。刀具相对静止、工件运动的原则:这样编程人员在不知是刀具移近工件还是工件移近刀具的情况下,就可以依据零件图纸,确定加工的过程标准坐标系原则:即机床坐标系确定机床上运动的大小与方向,以完成一系列的成形运动和辅助运动。运动方向的原则:数控机床的某一部件运动的正方向,是增大工件与具距离的方向。标准规定,机床传递切削力的主轴轴线为Z坐标(如:铣床、钻床、车床、磨床等);如果机床有几个主轴,则选一垂直于装夹平面的主轴作为主要主轴;如机床没有主轴(龙门刨床),则规定垂直于工件装夹平面为Z轴。X坐标X坐标一般是水平的,平行于装夹平面。对于工件旋转的机床(如车、磨床等),X坐标的方向在工件的径向上;对于刀具旋转的机床则作如下规定:当Z轴水平时,从刀具主轴后向工件看,正X为右方向。当Z轴处于铅垂面时,对于单立柱式,从刀具主轴后向工件看,正X为右方向;龙门式,从刀具主轴右侧看,正X为右方向。a传统对刀方法与专用对刀器对刀方法的区别传统对刀方法是用塞尺、塞规、纸片等,或用划刀韧、试切等方法经多次反复进行对刀,它有安全性差(如塞尺对刀,硬碰硬刀尖易撞坏);占用机时多(如试切需反复切量几次);人为带来的随机性误差大等缺点,已经适应不了数控加工的节奏,更大不利于发挥数控机床的功能. b用ETC系列机上专用电子对刀器对刀有以下优点: 对刀精度高:无需积累经验,只需按简单规程操作即可完成对刀;对刀时有声光提示,对刀点坐标在机床CRT上数字化显示精确直观,可以避免人为带来的测量误差,同时ETC系列电子对刀器本身复位精度很高(12微米)。综上所述,用ETC系列专用对刀器可以高精度地解决机上刀具对刀问题。对刀效率高:几次对刀熟练后Z向刀长对刀只需35秒即可对好;较复杂的镗刀对刀(X、Y轴径向对刀)也只需3分钟即可对好,可比用传统工具对刀节省至少2/3的占机时间,较高效率地完成对刀工作安全性好:ETC系列电子对刀器均设置较大的过保护行程,可保证刀具刀尖及对刀器的对刀面免受冲击破坏,在对对刀器正常操作及保养情况下可保证较高的使用寿命。总之,这种机床专用对刀器可把繁琐的靠经验保证的对刀工作简单化了,保证了数控机床的高效高精度特点的发挥,已成为数控加工机上解决刀具对刀不可或缺的一种专用工具。 c对刀点、换刀点、刀位点 1)对刀点是指程序起点处刀具刀位点;换刀点则是指加工过程中需要换刀时刀具的相对位置点。 2)对刀点可以设置在零件、夹具上或机床上面,尽可能设在零件的设计基准或工艺基准上;换刀点往往设在工件的外部,以能顺利换刀、不碰撞工件及其其它部件为准。3)常用刀具的刀位点规定:立铣刀、端铣刀的刀位点是刀具轴线与刀具底面的交点;球头铣刀刀位点为球心;镗刀、车刀刀位点为刀尖或刀尖圆弧中心;钻头是钻尖或钻头底面中心;线切割的刀位点则是线电极的轴心与零件面的交点。床的高效高精度特点的发挥,已成为数控加工机上解决刀具对刀不可或缺的一种专用工具快速自动换刀技术是以减少辅助加工时间为主要目的,综合考虑机床的各方面因素,在尽可能短的时间内完成刀具交换的技术方法。该技术包括刀库的设置、换刀方式、换刀执行机构和适应高速机床的结构特点等。(1)换刀速度指标 衡量换刀速度的方法主要有三种:刀到刀换刀时间:切削到切削换刀时间:切屑到切屑换刀时间。由于切屑到切屑换刀时间基本上就是加工中心两次切削之间的时间,反映了加工中心换刀所占用的辅助时间,因此切屑到切屑换刀时间应是衡量加工中心效率高低的最直接指标。而刀到刀换刀时间则主要反映自动换刀装置本身性能的好坏,更适合作为机床自动换刀装置的性能指标。这两种方法通常用来评价换刀速度。至于换刀时间多少才是高速机床的快速自动换刀装置并没有确定的指标,在技术条件可能的情况下,应尽可能提高换刀速度。(2)提高换刀速度的基本原则 加工中心自动刀具交换的基本出发点是在多种刀具参与的加工过程中,通过自动换刀,减少辅助加工时间。在高速加工中心上,由于切削速度的大幅度提高,自动换刀装置和刀库的配置要考虑尽可能缩短换刀时间,从而和高速切削的机床相配合。 加工中心的换刀装置通常由刀库和刀具交换机构组成,常用的有机械手式和无机械手式等方式。刀库的形式和摆放位置也不一样。为了适合高速运动的需要,高速加工中心在结构上已和传统的加工中心不同,以刀具运动进给为主,减小运动件的质量已成为高速加工中心设计的主流。因此,设计换刀装置时,要充分考虑到高速机床的新结构特征。 在设置高速加工中心上的换刀装置时,时间并不是唯一的考虑因素。首先,应在换刀动作准确、可靠的基础上提高换刀速度。特别是ATC是加工中心功能部件中故障率相对比较高的部分,这一点尤其重要:其次,要根据应用对象和性能价格比选配ATC。在换刀时间对生产过程影响大的应用场合,要尽可能提高换刀速度。例如,在汽车等生产线上,换刀时间和换刀次数要计入零件生产节拍。而在另外一些地方,如模具型腔加工,换刀速度的选择就可以放宽一些。 提高换刀速度的主要技术方法;适合于高速加工中心的快速自动换刀技术主要有以下几个方面:在传统的自动换刀装置的基础上提高动作速度,或采用动作速度更快的机构和驱动元件。例如,机械凸轮结构的换刀速度要大大高于液压和气动结构。日本SODIC公司生产的MC450立式加工中心的机械凸轮结构的快速换刀装置,刀到刀换刀时间只有0.6s。 根据高速机床新的结构特点设计刀库和换刀装置的形式和位置。例如,传统的立式加工中心的刀库和换刀装置多装在立柱一侧:而高速加工中心则多为立柱移动的进给方式,为减轻运动件质量,刀库和换刀装置不宜再装在立柱上。 采用新方法进行刀具快速交换。不用刀库和机械手方式,而改用其它方式换刀。例如不用换刀,用换主轴的方法。 利用新开发的加工中心的主轴部件可作6自由度高速运动这一特点,让主轴直接参与换刀过程,不仅可使刀库配置位置灵活,而且可减少刀库运动的自由度,显著简化刀库和换刀装置的结构。 适合于高速加工中心的刀柄。HSK刀柄质量轻,拔插刀行程短,可以使自动换刀装置的速度提高。快速自动换刀装置采用HSK空心短锥柄刀是发展的趋势。 快速换刀的一些结构方法除了在传统换刀装置的基础上提高动作速度外,还出现了一些新方法和新结构换刀装置。(1)多主轴换刀 这种机床没有传统的刀库和换刀装置,而是采用多个主轴并排固定在主轴架上,一般为318个。每个主轴由各自的电动机直接驱动,并且每个主轴上安装了不同的刀具。换刀时不是主轴上的刀具交换,而是安装在夹具上的工件快速从一个主轴的加工位置移动到另一个装有不同刀具的主轴,实现换刀并立即加工。这个移动时间就是换刀时间,而且非常短。由夹具快速移动完成换刀,省去了复杂的换刀机构。奥地利ANGERG公司生产的这种结构的机床,实现了切屑到切屑换刀时间仅为0.4s。是目前世界上切屑到切屑换刀时间最短的机床。这种结构的机床和通常的加工中心结构已大不相同。不仅可以用于需要快速换刀的加工,而且可以多轴同时加工,适合在高效率生产线上使用。(2)双主轴换刀 加工中心有两个工作主轴,但不是同时用于切削加工。一个主轴用于加工,另一个主轴在此期间更换刀具。但需要换刀时,加工的主轴迅速退出,换好刀具的主轴立即进入加工。由于两个过程可以同时进行,换刀时间实际就是已经装好刀具的两个主轴的换位时间,使辅助时间减到最少,即机床切屑到切屑换刀时间达到最短。由于有两个主轴,这种机床的刀库和换刀机械手可以是一套,也可以是两套。如德国Alfing-Kessler公司生产的加工中心采用双主轴系统,使用一套刀库和换刀机械手。而德国Hornsberg-Lamb公司生产的HSC-500、HSC-630、HFC-630加工中心有两个主轴和两套换刀系统。两个主轴可以用1.01.5s的时间移动到加工位置并启动加速到加工的最大速度。具体的交换时间取决于机床的尺寸。 (3)刀库布置在主轴周围的转塔方式 这种方式,刀库本身就相当于机械手,即通过刀库拔插刀并采用顺序换刀,使机床切屑到切屑换刀时间较短。这种方式如果要实现任意换刀,则就随所选刀在刀库的位置不同而存在时间长短不等,最远的刀可能切屑到切屑换刀时间较长。因此,这种方式作为高速自动换刀装置只能采用顺序选刀的方式。 (4)多机械手方式 同样,刀库布置在主轴的周围,但采用每把刀有一个机械手的方式使换刀几乎没有时间的损失,并可以采用任意选刀的方式。德国CHIRON公司生产的这种结构的机床,实现了切屑到切屑换刀时间仅为1.5s,是目前世界上单主轴机床切屑到切屑换刀时间最短的加工中心。 1.3常用基本指令 a暂停指令 G04X(U)_/P_是指刀具暂停时间(进给停止,主轴不停止),址P或X后数值是暂停时间。X后面数值要带小数点,否则以此数值千分之一计算,以秒(s)为单位,P后面数值不能带小数点(即整数表示),以毫秒(ms)为单位.例如,G04X2.0;或G04X2000;暂停2秒G04P2000;保证孔底精糙度,当刀具加工至孔底时需有暂停时间,此时只能用址P表示,若用址X表示,则控制系统认为X是X轴坐标值进行执行。例如,G82X100.0Y100.0Z-200R5.0F200P2000;钻孔(100.0,100.0)至孔底暂停2秒G82X100.0Y100.0Z-20.0R5.0F200X2.0;钻孔(2.0,100.0)至孔底不会暂停。bM00、M01、M02和M30区别与联系 M00为程序无条件暂停指令。程序执行到此进给停止,主轴停转。重新启动程序,必须先回到JOG状态下,按下CW(主轴正转)启动主轴,接着返回AUTO状态下,按下START键才能启动程序。M01为程序选择性暂停指令。程序执行前必须打开控制面板上OPSTOP键才能执行,执行后效果与M00相同,要重新启动程序同上。M00和M01常常用于加工中途工件尺寸检验或排屑.M02为主程序结束指令。执行到此指令,进给停止,主轴停止,冷却液关闭。但程序光标停程序末尾。M30为主程序结束指令。功能同M02,不同之处是,光标返回程序头位置,M30后是否还有其他程序段。c址D、H意义相同 刀具补偿参数D、H具有相同功能,可以任意互换,它们都表示数控系统中补偿寄存器址名称,但具体补偿值是多少,关键是由它们后面补偿号址来决定。加工中心中,防止出错,一般人为规定H为刀具长度补偿址,补偿号从120号,D为刀具半径补偿址,补偿号从21号开始(20把刀刀库)。例如,G00G43H1Z100.0;G01G41D21X20.0Y35.0F200;d镜像指令 镜像加工指令M21、M22、M23。当只对X轴或Y轴进行镜像时,切削时走刀顺序(顺铣与逆铣),刀补方向,圆弧插补转向都会与实际程序相反,如图1所示。当同时对X轴和Y轴进行镜像时,走刀顺序,刀补方向,圆弧插补转向均不变。注意:使用镜像指令后必须用M23进行取消,以免影响后面程序。G90模式下,使用镜像或取消指令,都要回到工件坐标系原点才能使用。否则,数控系统无法计算后面运动轨迹,会出现乱走刀现象。这时必须实行手动原点复归操作予以解决。主轴转向不镜像指令变化。e圆弧插补指令 G02为顺时针插补,G03为逆时针插补,XY平面中,格式如下:G02/G03X_Y_I_K_F_或G02/G03X_Y_R_F_,其中X、Y为圆弧终点坐标,I、J为圆弧起点到圆心X、Y轴上增量值,R为圆弧半径,F为进给量。圆弧切削时注意,q180,R为正值;q180,R为负值;I、K指定也可用R指定,当两者同时被指定时,R指令优先,I、K无效;R不能做整圆切削,整圆切削只能用I、J、K编程,同一点,半径相同圆有无数个.当有I、K为零时,就可以省略;G90G91方式,I、J、K都按相对坐标编程;圆弧插补时,不能用刀补指令 G41/G42。fG92与G54G59之间优缺点 G54G59是加工前设定好坐标系,而G92是程序中设定坐标系,用了G54G59就没有必要再使用G92,否则G54G59会被替换,应当避免。注意:(1)一旦使用了G92设定坐标系,再使用G54G59不起任何作用,断电重新启动系统,或接着用G92设定所需新工件坐标系。(2)使用G92程序结束后,若机床没有回到G92设定原点,就再次启动此程序,机床当前所位置就成为新工件坐标原点,易发生事故。,希望广大读者慎用。j编制换刀子程序。 加工中心上,换刀是不可避免。但机床出厂时都有一个固定换刀点,不换刀位置,便不能够换刀,换刀前,刀补和循环都必须取消掉,主轴停止,冷却液关闭。条件繁多,每次手动换刀前,都要保证这些条件,易出错效率低,我们可以编制一个换刀程序保存系统内存内,换刀时,MDI状态下用M98调用就可以一次性完成换刀动作。以PMC-10V20加工中心为例,程序如下:O2002;(程序名)G80G40G49;(取消固定循环、刀补)M05;(主轴停止)M09;(冷却液关闭)G91G30Z0;(Z轴回到第二原点,即换刀点)M06;(换刀)M99;(子程序结束) 需要换刀时候,只需MDI状态下,键入“T5M98P2002”,即可换上所需刀具T5,避免了许多不必要失误。广大读者可自己机床特点,编制相应换刀子程序。k其他 程序段顺序号,用址N表示。一般数控装置本身存储器空间有限(64K),节省存储空间,程序段顺序号都省略不要。N只表示程序段标号,可以方便查找编辑程序,对加工过程不起任何作用,顺序号可以递增也可递减,要求数值有连续性。但使用某些循环指令,跳转指令,调用子程序及镜像指令时不可以省略。l同一条程序段中,相同指令(相同址符)或同一组指令,后出现起作用。例如,换刀程序,T2M06T3;换上是T3而T2;G01G00X50.0Y30.0F200;执行是G00(虽有F值,但执行G01)。同一组指令代码,同一程序段中互换先后顺序执行效果相同。G90G54G00X0Y0Z100.0;G00G90G54X0Y0Z100.0; 以上各项均PMC-10V20(FANUCSYSTEM)加工中心上运行。实际应用中,深刻理解各种指令用法和编程规律,才可以减少错误,避免事故发生。g.不同控制系统指令区别 不同控制系统,比如说,法兰克和西门子,它们指令本身就是很不一样。例如:法兰克子程序以M98开始,M99结束,西门子是以L作为标记符,以M17结束。 1.4刀具半径,长度补偿1.4.1刀具长度补偿 1刀具长度的概念刀具长度是一个很重要的概念。我们在对一个零件编程的时候,首先要指定零件的编程中心,然后才能建立工件编程坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。长度补偿只是和Z坐标有关,它不象X、Y平面内的编程零点,因为刀具是由主轴锥孔定位而不改变,对于Z坐标的零点就不一样了。每一把刀的长度都是不同的,例如,我们要钻一个深为50mm的孔,然后攻丝深为45mm,分别用一把长为250mm的钻头和一把长为350mm的丝锥。先用钻头钻孔深50mm,此时机床已经设定工件零点,当换上丝锥攻丝时,如果两把刀都从设定零点开始加工,丝锥因为比钻头长而攻丝过长,损坏刀具和工件。此时如果设定刀具补偿,把丝锥和钻头的长度进行补偿,此时机床零点设定之后,即使丝锥和钻头长度不同,因补偿的存在,在调用丝锥工作时,零点Z坐标已经自动向Z+(或Z)补偿了丝锥的长度,保证了加工零点的正确。 2.刀具长度补偿的工作使用刀具长度补偿是通过执行含有G43(G44)和H指令来实现的,同时我们给出一个Z坐标值,这样刀具在补偿之后移动到离工件表面距离为Z的地方。另外一个指令G49是取消G43(G44)指令的,其实我们不必使用这个指令,因为每把刀具都有自己的长度补偿,当换刀时,利用G43(G44)H指令赋予了自己的刀长补偿而自动取消了前一把刀具的长度补偿。 3.刀具长度补偿的两种方式(1)用刀具的实际长度作为刀长的补偿(推荐使用这种方式)。使用刀长作为补偿就是使用对刀仪测量刀具的长度,然后把这个数值输入到刀具长度补偿寄存器中,作为刀长补偿。使用刀具长度作为刀长补偿的理由如下: 首先,使用刀具长度作为刀长补偿,可以避免在不同的工件加工中不断地修改刀长偏置。这样一把刀具用在不同的工件上也不用修改刀长偏置。在这种情况下,可以按照一定的刀具编号规则,给每一把刀具作档案,用一个小标牌写上每把刀具的相关参数,包括刀具的长度、半径等资料,事实上许多大型的机械加工型企业对数控加工设备的刀具管理都采用这种办法。这对于那些专门设有刀具管理部门的公司来说,就用不着和操作工面对面地告诉刀具的参数了,同时即使因刀库容量原因把刀具取下来等下次重新装上时,只需根据标牌上的刀长数值作为刀具长度补偿而不需再进行测量。 其次,使用刀具长度作为刀长补偿,可以让机床一边进行加工运行,一边在对刀仪上进行其他刀具的长度测量,而不必因为在机床上对刀而占用机床运行时间,这样可以充分发挥加工中心的效率。这样主轴移动到编程Z坐标点时,就是主轴坐标加上(或减去)刀具长度补偿后的Z坐标数值。 (2)利用刀尖在Z方向上与编程零点的距离值(有正负之分)作为补偿值。这种方法适用于机床只有一个人操作而没有足够的时间来利用对刀仪测量刀具的长度时使用。这样做当用一把刀加工另外的工件时就要重新进行刀长补偿的设置。使用这种方法进行刀长补偿时,补偿值就是主轴从机床Z坐标零点移动到工件编程零点时的刀尖移动距离,因此此补偿值总是负值而且很大。1.4.2刀具半径补偿 1.刀具半径补偿的概念正像使用了刀具长度补偿在编程时基本上不用考虑刀具的长度一样,因为有了刀具半径补偿,我们在编程时可以不要考虑太多刀具的直径大小了。刀长补偿对所有的刀具都适用,而刀具半径补偿则一般只用于铣刀类刀具。当铣刀加工工件的外或内轮廓时,就用得上刀具半径补偿,当用端面铣刀加工工件的端面时则只需刀具长度补偿。因为刀具半径补偿是一个比较难以理解和使用的一个指令,所以在编程中很多人不愿使用它。但是我们一旦理解和掌握了它,使用起来对我们的编程和加工将带来很大的方便。当编程者准备编一个用铣刀加工一个工件的外形的程序时,首先要根据工件的外形尺寸和刀具的半径进行细致的计算坐标值来明确刀具中心所走的路线。此时所用的刀具半径只是这把铣刀的半径值,当辛辛苦苦编完程序后发现这把铣刀不太适合要换用其他直径的刀具,编程员就要不辞辛劳地重新计算刀具中心所走的路线的坐标值。这对于一个简单的工件问题不太大,对于外形复杂的模具来说重新计算简直是太困难了。一个工件的外形加工分粗加工和精加工,这样粗加工程序编好后也就是完成了粗加工。因为经过粗加工,工件外形尺寸发生了变化,接下来又要计算精加工的刀具中心坐标值,工作量就更大了。此时,如果用了刀具半径补偿,这些麻烦都迎刃而解了。我们可以忽略刀具半径,而根据工件尺寸进行编程,然后把刀具半径作为半径补偿放在半径补偿寄存器里。临时更换铣刀也好、进行粗精加工也好,我们只需更改刀具半径补偿值,就可以控制工件外形尺寸的大小了,对程序基本不用作一点修改。 2.刀具半径补偿的使用刀具半径补偿的使用是通过指令G41、G42来执行的。补偿有两个方向,即沿刀具切削进给方向垂直方向的左面和右面进行补偿,符合左右手定则;G41是左补偿,符合左手定则;G42是右补偿,符合右手定则,如图3所示。图3刀具半径补偿使用的左右手定则在使用G41、G42进行半径补偿时,应特别注意使补偿有效的刀具移动方向与坐标。刀具半径补偿的起刀位置很重要,如果使用不当刀具所加工的路径容易出错,如图4所示。图4刀具半径补偿的起刀位置如果使G42补偿有效的过程为刀具从位置1到2,则铣刀将切出一个斜面如图4中所示的AB斜面。正确的走刀应该是在刀具没有切削工件之前让半径补偿有效,然后进行正常的切削。如图4所示,先让铣刀在从位置1移动到位置3的过程中使补偿有效,然后从位置3切削到位置2继续以下的切削,则不会出现AB斜面。因此,在使用G41、G42进行半径补偿时应采取以下步骤:设置刀具半径补偿值;让刀具移动来使补偿有效(此时不能切削工件);正确地取消半径补偿(此时也不能切削工件)。记住,在切削完成而刀具补偿结束时,一定要用G40使补偿无效。G40的使用同样遇到和使补偿有效相同的问题,一定要等刀具完全切削完毕并安全地推出工件以后才能执行G40命令来取消补偿。3夹具偏置补偿正像刀具长度补偿和半径补偿一样让编程者可以不用考虑刀具的长短和大小,夹具偏置可以让编程者不考虑工件夹具的位置而使用夹具偏置当一台加工中心在加工小的工件时,工装上一次可以装夹几个工件,编程者不用考虑每一个工件在编程时的坐标零点,而只需按照各自的编程零点进行编程,然后使用夹具偏置来移动机床在每一个工件上的编程零点。夹具偏置是使用夹具偏置指令G54G59来执行的。还有一种方法就是使用G92指令设定坐标系。当一个工件加工完成之后,加工下一个工件时使用G92来重新设定新的工件坐标系。上面是在数控加工中常用的三种补偿,它给我们的编程和加工带来很大的方四、刀具长度补偿: 4刀具长度的概念刀具长度是一个很重要的概念。我们在对一个零件编程的时候,首先要指定零件的编程中心,然后才能建立工件编程坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。长度补偿只是和Z坐标有关,它不象X、Y平面内的编程零点,因为刀具是由主轴锥孔定位而不改变,对于Z坐标的零点就不一样了。每一把刀的长度都是不同的,例如,我们要钻一个深为50mm的孔,然后攻丝深为45mm,分别用一把长为250mm的钻头和一把长为350mm的丝锥。先用钻头钻孔深50mm,此时机床已经设定工件零点,当换上丝锥攻丝时,如果两把刀都从设定零点开始加工,丝锥因为比钻头长而攻丝过长,损坏刀具和工件。此时如果设定刀具补偿,把丝锥和钻头的长度进行补偿,此时机床零点设定之后,即使丝锥和钻头长度不同,因补偿的存在,在调用丝锥工作时,零点Z坐标已经自动向Z+(或Z)补偿了丝锥的长度,保证了加工零点的正确。 5刀具长度补偿的工作使用刀具长度补偿是通过执行含有G43(G44)和H指令来实现的,同时我们给出一个Z坐标值,这样刀具在补偿之后移动到离工件表面距离为Z的地方。另外一个指令G49是取消G43(G44)指令的,其实我们不必使用这个指令,因为每把刀具都有自己的长度补偿,当换刀时,利用G43(G44)H指令赋予了自己的刀长补偿而自动取消了前一把刀具的长度补偿。 6刀具长度补偿的两种方式(1)用刀具的实际长度作为刀长的补偿(推荐使用这种方式)。使用刀长作为补偿就是使用对刀仪测量刀具的长度,然后把这个数值输入到刀具长度补偿寄存器中,作为刀长补偿。使用刀具长度作为刀长补偿的理由如下: 首先,使用刀具长度作为刀长补偿,可以避免在不同的工件加工中不断地修改刀长偏置。这样一把刀具用在不同的工件上也不用修改刀长偏置。在这种情况下,可以按照一定的刀具编号规则,给每一把刀具作档案,用一个小标牌写上每把刀具的相关参数,包括刀具的长度、半径等资料,事实上许多大型的机械加工型企业对数控加工设备的刀具管理都采用这种办法。这对于那些专门设有刀具管理部门的公司来说,就用不着和操作工面对面地告诉刀具的参数了,同时即使因刀库容量原因把刀具取下来等下次重新装上时,只需根据标牌上的刀长数值作为刀具长度补偿而不需再进行测量。 其次,使用刀具长度作为刀长补偿,可以让机床一边进行加工运行,一边在对刀仪上进行其他刀具的长度测量,而不必因为在机床上对刀而占用机床运行时间,这样可以充分发挥加工中心的效率。这样主轴移动到编程Z坐标点时,就是主轴坐标加上(或减去)刀具长度补偿后的Z坐标数值。 利用刀尖在Z方向上与编程零点的距离值(有正负之分)作为补偿值。这种方法适用于机床只有一个人操作而没有足够的时间来利用对刀仪测量刀具的长度时使用。这样做当用一把刀加工另外的工件时就要重新进行刀长补偿的设置。使用这种方法进行刀长补偿时,补偿值就是主轴从机床Z坐标零点移动到工件编程零点时的刀尖移动距离,因此此补偿值总是负值而且很大。 7刀具半径补偿的概念正像使用了刀具长度补偿在编程时基本上不用考虑刀具的长度一样,因为有了刀具半径补偿,我们在编程时可以不要考虑太多刀具的直径大小了。刀长补偿对所有的刀具都适用,而刀具半径补偿则一般只用于铣刀类刀具。当铣刀加工工件的外或内轮廓时,就用得上刀具半径补偿,当用端面铣刀加工工件的端面时则只需刀具长度补偿。因为刀具半径补偿是一个比较难以理解和使用的一个指令,所以在编程中很多人不愿使用它。但是我们一旦理解和掌握了它,使用起来对我们的编程和加工将带来很大的方便。当编程者准备编一个用铣刀加工一个工件的外形的程序时,首先要根据工件的外形尺寸和刀具的半径进行细致的计算坐标值来明确刀具中心所走的路线。此时所用的刀具半径只是这把铣刀的半径值,当辛辛苦苦编完程序后发现这把铣刀不太适合要换用其他直径的刀具,编程员就要不辞辛劳地重新计算刀具中心所走的路线的坐标值。这对于一个简单的工件问题不太大,对于外形复杂的模具来说重新计算简直是太困难了。一个工件的外形加工分粗加工和精加工,这样粗加工程序编好后也就是完成了粗加工。因为经过粗加工,工件外形尺寸发生了变化,接下来又要计算精加工的刀具中心坐标值,工作量就更大了。此时,如果用了刀具半径补偿,这些麻烦都迎刃而解了。我们可以忽略刀具半径,而根据工件尺寸进行编程,然后把刀具半径作为半径补偿放在半径补偿寄存器里。临时更换铣刀也好、进行粗精加工也好,我们只需更改刀具半径补偿值,就可以控制工件外形尺寸的大小了,对程序基本不用作一点修改。 8.刀具半径补偿的使用刀具半径补偿的使用是通过指令G41、G42来执行的。补偿有两个方向,即沿刀具切削进给方向垂直方向的左面和右面进行补偿,符合左右手定则;G41是左补偿,符合左手定则;G42是右补偿,符合右手定则。刀具半径补偿使用的左右手定则在使用G41、G42进行半径补偿时,应特别注意使补偿有效的刀具移动方向与坐标。刀具半径补偿的起刀位置很重要,如果使用不当刀具所加工的路径容易出错,正确的走刀应该是在刀具没有切削工件之前让半径补偿有效,然后进行正常的切削,因此,在使用G41、G42进行半径补偿时应采取以下步骤:设置刀具半径补偿值;让刀具移动来使补偿有效(此时不能切削工件);正确地取消半径补偿(此时也不能切削工件)。记住,在切削完成而刀具补偿结束时,一定要用G40使补偿无效。G40的使用同样遇到和使补偿有效相同的问题,一定要等刀具完全切削完毕并安全地推出工件以后才能执行G40命令来取消补偿。8夹具偏置补偿正像刀具长度补偿和半径补偿一样让编程者可以不用考虑刀具的长短和大小,夹具偏置可以让编程者不考虑工件夹具的位置而使用夹具偏置。当一台加工中心在加工小的工件时,工装上一次可以装夹几个工件,编程者不用考虑每一个工件在编程时的坐标零点,而只需按照各自的编程零点进行编程,然后使用夹具偏置来移动机床在每一个工件上的编程零点。夹具偏置是使用夹具偏置指令G54G59来执行的。还有一种方法就是使用G92指令设定坐标系。当一个工件加工完成之后,加工下一个工件时使用G92来重新设定新的工件坐标系。上面是在数控加工中常用的三种补偿,它给我们的编程和加工带来很大的方便,能大大地提高工作效率。 第二章 加工工序及切削用量2.1确定加工顺序和工序 1表面加工方法和加工方案的选择(1)加工面的技术要求经济精度正常工作条件下所达到的加工精度(2)工件材料的性质及热处理(3)工件的形状和尺寸(4)结合生产类型考虑生产率和经济性(5)现有生产条件2加工阶段的划分粗加工阶段尽快切除余量高生产率半精加工阶段继续减少加工余量,为精加工作准备,次要面加工精加工阶段达到要求的加工精度和表面粗糙度光整加工和超精密阶段降低表面粗糙度值原因:保证加工质量 合理使用设备 便于安排热处理及时发现毛坯缺陷,保护精加工表面 加工阶段划分针对零件加工的整个过程、针对主要加工面3工序集中与工序分散 工序集中工序少,内容多装夹次数少,位置精度高,设备数量少,工人少工序分散工序多,内容少设备工装简单,调整方便,切削用量合理;设备多,工人多4加工顺序的安排(1)机械加工顺序的安排先基准后其它先粗后精先主后次、穿插进行先面后孔 基准加工主要面粗加工次要面加工主要面半精加工次要面加工修基准主要面精加工2.2切削用量的确定 所谓合理的切削用量是指充分利用刀具的切削性能和机床性能,在保证加工质量的前提下,获得高的生产率和低的加工成本的切削用量。 不同的加工性质,对切削加制订切削用量,就是要在已经选择好刀具材料和几何角度的基础上,合理地确定切削深度ap、进给量f和切削速度c。 所谓合理的切削用量是指充分利用刀具的切削性能和机床性能,在保证加工质量的前提下,获得高的生产率和低的加工成本的切削用量。 不同的加工性质,对切削加工的要求是不一样的。因此,在选择切削用量时,考虑的侧重点也应有所区别。粗加工时,应尽量保证较高的金属切除率和必要的刀具耐用度,故一般优先选择尽可能大的切削深度ap,其次选择较大的进给量f,最后根据刀具耐用度要求,确定合适的切削速度。精加工时,首先应保证工件的加工精度和表面质量要求,故一般选用较小的进给量f和切削深度ap,而尽可能选用较高的切削速度c。 切削深度ap的选择 切削深度应根据工件的加工余量来确定。粗加工时,除留下精加工余量外,一次走刀应尽可能切除全部余量。当加工余量过大,工艺系统刚度较低,机床功率不足,刀具强度不够 或断续切削的冲击振动较大时,可分多次走刀。切削表面层有硬皮的铸锻件时,应尽量使ap大于硬皮层的厚度,以保护刀尖。 半精加工和精加工的加工余量一般较小时,可一次切除,但有时为了保证工件的加工精度和表面质量,也可采用二次走刀。 多次走刀时,应尽量将第一次走刀的切削深度取大些,一般为总加工余量的2/33/4。 在中等功率的机床上、粗加工时的切削深度可达810mm,半径加工(表面粗糙度为Ra6.33.2m)时,切削深度取为0.52mm,精加工(表面粗糙度为Ra1.60.8m)时,切削深度取为0.10.4mm。 进给量f的选择 切削深度选定后,接着就应尽可能选用较大的进给量f。粗加工时,由于作用在工艺系统上的切削力较大,进给量的选取受到下列因素限制;机床刀具工件系统的刚度,机床进给机构的强度,机床有效功率与转矩,以及断续切削时刀片的强度。 半精加工和精
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云计算数据迁移与集成服务协议
- 农业产业链整合发展合作协议书
- 农民合作社区设施建设协议
- 2025氢能产业链关键技术进展与应用创新案例分析报告
- 小区绿化与农民园艺服务协议
- 娱乐项目投资开发协议
- 合伙经营酒吧合同协议范本与注意事项
- 第一节计算机的发展历程教学设计-2025-2026学年初中信息技术甘教版2022七年级上册-甘教版2022
- 高中化学 第二章 第三节 第四课时 化学反应速率和化学平衡图像说课稿 新人教版选修4
- 2025-2030快餐行业本土化分析及单品突破与区域扩张策略研究报告
- 无线wifi安装协议书
- 中国智能驾驶商业化发展白皮书(2025):平权时代智驾商业落地的破局之路
- 小学科学新教科版二年级上册全册教案(2025秋版)
- 婚内财产协议书2025
- 2025年海南省通信网络技术保障中心招聘考试笔试试题(含答案)
- 2025年国家卫生健康委医药卫生科技发展研究中心招聘考试笔试试题(含答案)
- 中华医学会肺癌临床诊疗指南2025版解读
- 2025年宿州市公安机关公开招聘警务辅助人员110名笔试备考试题及答案解析
- 新课标(水平一)体育与健康《非移动性技能》大单元教学计划及配套教案(18课时)
- 【历史】2025年新版3年高考2年模拟:专题15-苏联社会主义建设
- 2025至2030中国PE微粉蜡市场需求量预测及前景动态研究报告
评论
0/150
提交评论