




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
目录摘要2Abstract2绪论3第一章 温度传感器的应用及问题31.1 引言31.2传感器31.3 任务与要求31.3.1 本设计课题的目的和意义31.3.2 设计任务及指标41.4 本章小结4第二章 温度传感器的简介42.1集成温度传感器的介绍42.2 温度传感器的发展历史42.2.1分立式温度传感器42.2.2模拟集成温度传感器52.2.3模拟集成温度控制器52.2.4智能温度传感器52.2.5智能温度控制器52.2.6内含温度传感器的专用集成电路62.3 智能温度传感器发展的新趋势62.3.1 提高测温精度和分辨率62.3.2 不断增加测试功能72.3.3总线技术的标准化与规范化72.3.4可靠性及安全性设计72.3.5开发虚拟温度传感器和网络温度传感器82.3.6研制单片测温系统92.4 本章小结9第三章 智能温度传感器与单片机93.1 智能温度传感器的产品分类93.2 智能温度传感器典型产品的技术指标93.3 单片机AT89C2051的简介103.4 单片机AT89C2051的引脚图113.5 本章小结11第四章DS18B20数字温度计114.1 DS18B20温度传感器的性能特点114.2 DS18B20温度传感器的内部结构框图及设置114.3DS18B20温度传感器与单片机的接口电路144.4本章小结14第五章 数字温度计的设计155.1 总体设计方案155.2方案的总体设计框图155.2.1主控制器155.2.2显示电路175.2.3温度传感器175.2.3DS18B20温度传感器与单片机的接口电路175.3系统整体硬件电路185.3.1主板电路185.3.2显示电路185.4系统软件算法分析195.4.1主程序195.4.2读出温度子程序205.4.3温度转换命令字程序215.4.4计算温度子程序215.4.5显示数据刷新子程序215.1 本章小结21第六章 硬件226.1 系统硬件主要构成226.2调试及性能分析22总结22致谢23参考文献23摘要温度作为一个常用的物理量在我们的气场生活中起着十分重要的作用,所以对温度计的设计也十分必要。在此介绍一种智能数字温度计,这种温度计有许多优点,并且它的应用范围非常广泛。它的主要元件是:控制器AT89C2051、温度传感器DS18B20、数码管LED和三极管9012,所以这种温度计不仅设计起来简单并且轻便、便宜,总体来说这种温度计的性价比是很高的。它的主要原理是利用DS18B20可以很好的转换温度值,并且直接显示温度值,它的性能优于传统的感温元件并且省去了AD、和模拟开关的设计。此外AT89C2051体积小并且还可以直接驱动LED,这样大大化简了设计的难度并且降低了成本。【关键词】 智能 数字 温度计 温度AbstractThe temperature took a commonly used physical quantity is playing the extremely vital role in ours gas field life, therefore extremely is also essential to the thermometer design.In this introduced one kind of intelligent numeral thermometer, this kind of thermometer has many merits, and its application scope is extremely widespread.Its key element is: Controller - AT89C2051, temperature sensor - DS18B20, nixietube - LED and triode - 9012, not only therefore this kind of thermometer designs simple and is facile, is cheap, generally speaking this kind of thermometer performance-to-price ratio is very high.Its main principle is uses DS18B20 to be possible the very good transformation temperature value, and demonstrates the temperature value directly, and its performance surpassed traditional the bulb to omit A D, and the analog switch design.And in addition at89C2051 volume small also may direct drive LED, and simplified the design difficulty to reduce the cost like this greatly. Key word Intelligence Numeral Thermometer Temperature绪论单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,在工业控制、智能仪器仪表、数据采集和处理、通信系统、高级计算器、家用电器等领域的应用日益广泛,并且正在逐步取代现有的多片微机应用系统。单片机的潜力越来越被人们所重视。特别是当前用CMOS工艺制成的各种单片机,由于功耗低,使用的温度范围大,抗干扰能力强,能满足一些特殊要求的应用场合,更加扩大了单片机的应用范围,也进一步促使单片机性能的发展。而现在的单片机在农业上页有了很多的应用。 温度是日常生活、工业、医学、环境保护、化工、石油等领域最常用到的一个物理量。测量温度的基本方法是使用温度计直接读取温度。最常见到得测量温度的工具是各种各样的温度计,例如:水银玻璃温度计,酒精温度计,热电偶或热电阻温度计等。它们常常以刻度的形式表示温度的高低,人们必须通过读取刻度值的多少来测量温度。利用单片机和温度传感器构成的电子式智能温度计就可以直接测量温度,得到温度的数字值,既简单方便,有直观准确。第一章 温度传感器的应用及问题1.1 引言在日常生活及工、农业生产中经常要用到温度的检测及控制。传统的温度测量元件有热电偶和热电阻,而热电偶和热电阻测出的一般都是电压,再转换成对应温度需要比较多的外部硬件支持,硬件电路复杂,软件调试复杂,制作成本高。1.2传感器传感器是将感受到的外界信息,按照一定的规律转换成所需的有用信息的装置,它获取的信息可以是各种物理量、化学量和生物量,而转换后的信息也有各种形式。例如:光、温度、声、委位移、压力等物理量,可以通过传感器相互转化。但是通常是将非电量或电量转换成易于处理和传输的电量,有些传感器的这种转换是可逆的,即输入量为电量而输出量为机械量或热工艺量等。1.3 任务与要求1.3.1 本设计课题的目的和意义这次毕业设计的课题是数字温度测量系统的设计,首先通过调研收集数据进行产品开发,通过分析进行实时优化。通过本次毕业设计使学生了解和掌握工程设计所应遵循的步骤和程序,毕业设计结束时,参与设计的同学应具有以下的能力:(一)综合应用的能力。(二)市场调研能力。(三)应用参考文献的能力。(四)电路设计能力。(六)分析问题的能力。(七)创新能力。1.3.2 设计任务及指标1:设计任务:利用单片机和数字温度传感器,实现一个能精确测量并显示温度的实际应用系统,为低成本的数字温度测量系统设计提出一种新的解决方案。并需说明设计方案的构思依据、设计思路、系统原理、设计过程及系统工作流程图。2:技术指标: 系统稳定性高; 使用四位数码管显示温度值; 测量精度达0.1; 要求系统具备复位功能;1.4 本章小结本章主要简单介绍了温度在日常生活中的应用,传感器的定义及本课题设计的目的和意义。第二章 温度传感器的简介2.1集成温度传感器的介绍 在工农业生产、科学研究过程中,温度是需要测量和控制的重要参数之一。温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的测量参数。温度的测量及控制对保证产品的质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非 常重要的作用。由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位,约占50%. 温度传感器是通过物体随温度变化而改变某种特性来间接测量的。不少材料、元件的特 性都随温度的变化而变化,所以能做温度传感器的材料相当多。温度传感器随温度变化而引起物理参数变化的有:膨胀、电阻、电容、热电动势、磁性能、频率、光学特性及热噪声等等。温度传感器的发展很快,种类很多,随着生产的发展,新型温度传感器还会不断的涌现。在此我们用到的集成温度传感器。 2.2 温度传感器的发展历史人们研究温度测量的历史已相当久远,所使用的传感器也种类很多。近百年来,温度传感器的发展大致经历了以下三个阶段:传统的分立式温度传感器(含敏感元件);模拟集成温度传感器控制器;智能温度传感器(即数字温度传感器)。2.2.1分立式温度传感器传统的热电偶、热电阻、热敏电阻及半导体温度传感器,均属于分立式温度传感器,传感器本身就是一个完整的、独立的感温元件。此类传感器通常要配温度变送器,以获得标准的模拟量(电压或电流)输出信号。使用时还需配上二次仪表,才能完成温度测量及控制功能。其主要缺点是外围电路比较复杂、测量精度较低、分辨率不高、需进行温度校准(例如非线性校准、温度补偿、传感器标定等),另外它们的体积较大、使用也不够方便。因此,分立式温度传感器将逐渐被淘汰。 2.2.2模拟集成温度传感器集成传感器是采用硅半导体集成工艺而制成的,因此亦称硅传感器或单片集成传感器。模拟集成温度传感器是在20 世纪80 年代问世的,它是将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出功能的专用IC,它属于最简单的一种集成温度传感器。模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗,适合远距离测温、控温,不需要进行非线性校难。外围电路简单,它是目前在国内外应用员为普遍的一种集成传感器。典型产品有AD590、AD592、 TMP17、LMl35 等。 2.2.3模拟集成温度控制器模拟集成温度控制器主要包括温控开关、可编程温度控制器,典型产品有LM56、 AD22105 和MAX6509。某些增强型集成温度控制器(例如TC652653)中还包含了A/D 转换器以及固化好的程序,这与智能温度传感器有某些相似之处,但它自成系统,工作时并不受微处理器的控制,这是二者的主要区别。 2.2.4智能温度传感器 智能温度传感器(亦称数字温度传感器)是在20 世纪90 年代中期问世的。智能温度传感器是微电子技术、计算机技术和自动测试技术的结晶,它也是集成温度传感器领域中最具活力和发展前途的一种新产品。目前,国际上许多著名的集成电路生产厂家己开发出上百种智能温度传感器产品。 智能温度传感器具有以下三个显著特点:第一,能输出温度数据及相关的温度控制量,适配各微控制器(MCU);第二,能以最简方式构成高性价比、多功能的智能化温度测控系统;第三,它是在硬件的基础上通过软件来实现测试功能的,其智能化程度也取决于软件的开发水平。 智能温度传感器内部都包含温度传感器、AD 转换器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。 2.2.5智能温度控制器 智能温度控制器是在智能温度传感器的基础上发展而成的。智能温度控制器适配备种微控制器,构成智能化温控系统:它们还可以脱离微控制器单独工作,自行构成一个温控仪,既可以工作在连续转换模式,亦可选择单次转换模式。智能温度传感器控制器可广泛用于温度测控系绞、计算机及家用电器中。 2.2.6内含温度传感器的专用集成电路值得重视的是,目前配置有温度传感器的新型专用集成电路也己问世了。例如,美国MAXIM 公司最新研制的MAXl298 和MAXl299 型5 通道12 位ADC 芯片,片内就集成了精密温度传感器,在40 到85范围内的测温精度可达l。MAXl2981299 的内部结构及外部电路如图21 所示。芯片中主要包括七部分;内部温度传感器(用于测量本地温度), 远程测温通道(外接2N3904 型NPN 晶体管,利用其发射结来测量远程温度),多路转换开关(即模拟输入转换器),12 位ADC,内部基准电压源,时钟电路和3 线串行接口电路。该串行接口能与SPI 总线、QSPI 总线及MICROWIRE 服总线兼容。MAXl298 和MAXl299 具有两种输入方式:差分输入或单端输入。作差分输入时可构成3 通道温控系统,单端输入时能构成5 通道温控系统(不包括本地测温通道)。当芯片温度或远程被测温度超过最高允许温度 时,经过串行接口可输出温度越限报警信号,再通过相应的控制电路起到过热保护作用。其模拟输入端既可接电压信号,亦可接温度传感器。 图21 MAX12981299 的内部结构及外部电路图2.3 智能温度传感器发展的新趋势进入21 世纪之后,智能温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。 2.3.1 提高测温精度和分辨率 在20 世纪90 年代中期最早推出的智能温度传感器,采用的是8 位A/D 转换器,其测温精度较低,分辨率只能达到1。日前,国外己相继推出多种高精度、高分辨率的智能温度传感器,所用的是9 到12 位A/D 转换器,分辨率一般可达0.5 到0.0625。特别是由美国DALLAS 半导体公司新研制的DS1624 型高分辨率智能温度传感器,采用13 位A/D 转换器,能够输出13 位二进制数据,其分辨率高达0.03125,测温精度为0.2,为实现精密测量温度创造了有利条件。为了提高多通道智能温度传感器的转换速率,也有的芯片采用高 速逐次逼近式A/D 转换器。以AD7817 型5 通道智能温度传感器为例,它对本地传感器、每一路远程传感器的转换时间分别仅为27 s、9 s。 2.3.2 不断增加测试功能新型智能温度传感器的测试功能也在不断增强。例如,DSl629 型单线智能温度传感器增加了实时日历时钟(RTC),使其功能更加完善。DS1624 还增加了存储功能,利用芯片内部256 字节的E PROM 存储器,可存储用户的短信息。DSl629 则在片内集成了32 字节的静态存储器(RAM)。另外,智能温度传感器正从单通道向多通道的方向发展,这就为研制和开发多路温度测控系统创造了良好条件。 智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机(外部微处理器或单片机)还可通过相应的寄存器来设定其A/D 转换速率(典型产品为MAX6654),分辨率及最大转换时间(典型产品为DSl624)。智能温度控制器是在智能温度传感器的基础上发展而成的。典型产品有DSl620、DS1623、TCN75、LM76、MAX6625。智能温度控制器适配各种微控制器,构成智能化温控系统:它们还可以脱离微控制器单独工作,自行构成一个温控仪,既可以工作在连续转换模式,亦可选择单次转换模式。 2.3.3总线技术的标准化与规范化与此同时,智能温度传感器的总线技术也实现了标准化、规范化。目前所采用的总线主要有单线(1Wire)总线、I2 C 总线、SMB s 和SPI 总线。第一种属于一线串行总线,第二、三种属于二线串行总线,第四种则为三线串行总线。上述温度传感器作为从机,可通过专用总线接口与主机进行通信,由于它们的总线接口符合标准化、规范化设计,使用户操作起来更加简便。 2.3.4可靠性及安全性设计传统的AD 转换器大多采用积分式或逐次比较式转换技术,其缺点是噪声容限低,抑制混叠噪声及量化噪声的能力比较差,分辨率较低、成本较高,线性度也不够理想。 为了提高传感器的抗干扰能力,新型智能温度传感器(例如TMP0304、LM74、LM83)。普遍采用了高性能的?式A/D 转换器,它能以很高的采样速率和很低的采样分辨率将模拟信号转换成数字信号,再利用过采样、噪声整形和数字滤波技术,来提高有效分辨率。?式A/D 转换器不仅能滤除量化噪声,而且对外因元件的精度要求低;由于采用了数字反馈方式,因此比较器的失调电压及零点漂移都不会影响温度的转换精度。这种智能温度传感器兼有抑制串模干扰能力强、分辨力高、线性度好、成本低等优点。 为了避免当温控系统受到噪声干扰时出现误动作现象,在AD74167417/7817、LM7576、MAX66256626 等智能温度传感器芯片内部,都设置一个可编程的“故障排队(faultqueue)”计数器,专门用来设定允许被测温度值超过温度上、下限的次数。仅当被测温度连续超过上限或低于下限的次数达到或超过所设定的次数n(n=1 至4)时,才能触发中断端。若故障次数不满足上述条件或故障不是连续发生的,故障计数器就复位而不会触发中断端。这就意味着假如设定n3 时,那么偶然受到一次或两次唤声干扰,都不会影响温控系统的正常工作。 LM76 型智能温度传感器增加了温度窗口比较器,非常适合设计一个符合 ACPI( Advance Configuration and Power Interface,即“先进配置与电源接口”)规范的温控系统。这种系统具有完善的过热保护功能,可用来监控笔记本电脑和服务器中CPU 及主电路的温度。微处理器最高可承受的工作温度规定为TH ,台式计算机一般为75,高档笔记本电脑的专用CPU 可达100。一旦CPU 或主电路的温度超出所设定的上、下限时, INT端立即使主机产生中断,再通过电源控制器发出信号,迅速将主电源关断起到保护作用。此外,当温度超过CPU 的极限温度时,严重超温报警输出端(T_CRIT_T 入)也能直接关断主电源,并且该端还可以通过独立的硬件关断电源来切断主电源,以防主电源控制失灵。上述三重安全件保护措施已成为国际上设计温控系统的新观念。为防止因人体静电放电(ESD)而损坏芯片,一些智能温度传感器还增加了ESD保护电路,一般可承受1000到4000V的静电放电电压。通常是将人体等效于由100pF电容和1.2K电阻串联而成的电路模型,当人体放电时,TCN75型智能温度传感器的串行接口端、中断/比较器信号输出端和地址输入端均可承受1000V的静电放电电压,LM83型智能温度传感器则可承受4000V的静电放电电压。最新开发的智能温度传感器(例如MAX6654、LM83)还增加了传感器故障检测功能,能自动检测外部晶体管温度传感器(亦称远程传感器)的开路或短路故障。MAX6654还具有选择“寄生阻抗抵消”(Parasitic Resistance Cancellation,英文缩写为PRC)模式,能抵消远程传感器引线阻抗所引起的测温误差,即使引线阻抗达到100,也不会影响测量精度。远程传感器引线可采用普通双绞线或者带屏蔽层的双绞线。2.3.5开发虚拟温度传感器和网络温度传感器(1) 虚拟传感器自20世纪90年代以来,一种全新模念的“虚拟仪器”正获得愈来愈广泛的应用。虚拟仪器(VI)是测量仪器、计算机和软件这三者的有机结合。它将仪器硬件(例如数字采集系统、A/D、D/A装唤器、数字I/O)、计算机资源(如微处理器、存储器、显示器)、软件(如传感器标定、软面板、图形界面、数据处理、信息交换等)有机的结合起来,构成软硬结合、实虚共体的新一代电子测量仪器。与此同时,“虚拟传感器”的概念也被人们所接受,这种传感器是基于计算机平台并且完全通过软件开发而成的。利用软件来建立传感器模型、标定参数及标定模型,以实现最佳性能指标。美国BK公司最近已开发出一种基于软件设置的TEDS型虚拟传感器,其主要特点是每只传感器都有唯一的产品序列号并且附带一张软盘,软盘上存储着对该传感器进行标定的有关数据。使用时,传感器通过数据采集接垒计算机,首先从计算机输入该传感器的产品序列号,再从软盘上读出有关数据,然后自动完成对传感器的检查、传感器参数的读取,传感器设置和记录工作。此外,专供开发虚拟传感器产品的软件工具也已经面市了。这样在以后的产品设计过程中对元件选择可以均衡各种性能的要求来决定。(2) 网络温度传感器网络温度传感器是包含数据传感器、网络接口和处理单元的新一代智能传感器。这里讲的网络已经不限于传感器总线,还应包括现场总线、局域网和因特网。数字传感器首先将被测温度转换成数字量,在传送给微控制器作数据处理,最后将测量结果传输给网络,以便实现各传感器之间、传感器与执行器之间,传感器与系统之间的数据交换及资源共享。一个分布式智能温度传感器系统是通过网络将每个传感器节点、控制节点和中央控制器联系起来的。其中传感器节点用来实现温度测量并将数据传输给网络上的其它节点。控制节点则根据从网络读取的温度数据来确定合适的控制方式。以满足对温度控制的需要。传感器节点和控制节点不仅互相独立,节点的数量可根据实际需要而定,而且能做到“即插即用”(PlugPlay),在更换传感器节点时,也无需对传感器进行标定和校准,这样就极大的方便了用户。2.3.6研制单片测温系统 单片系统(System On Chip)是21世纪一项新科技产品,它是在芯片上集成一个系统或子系统,其集成度将高达10的八次方到十的九次方元件/片,这将给IC产业及IC应用带来划时代的进步。最近,ADI公司已在单片系统芯片的研究上取得了突破性进展,开发出精密数据采集系统级芯片(SOC)。它把微控制器051/8052、高精度数模/模数转换器(DAC/ADC),闪速存储器(Flash Memory)、随机存取存储器(RAM)及通信电路等集成单一芯片上,可广泛用于工业控制。仪器仪表和通信等领域。2.4 本章小结本章主要叙述了传感器的发展历史和智能温度传感器的发展趋势。第三章 智能温度传感器与单片机3.1 智能温度传感器的产品分类智能温度传感器采用了数字化技术,能以数据形式输出被测温度值。其测温误差小、分辨率高、抗干扰能力强、能远程传输数据、用户可设定上、下限,具有越限自动报警功能并且带串行总线接口,适配各种微控制器。按照串行总线划分有单线总线(1Wire)、二线总线(含SMBUS、I2C总线)三线总线(含SPI总线)几种类型。典型产品有DS18B20(单线总线)、LM75(I2C总线)和LM75(SPI总线)。多通道智能温度传感器除具有内置温度传感器之外,还专门增加了若干个远程测温通道,通过在总线上接多片同种型号的芯片,很容易将通道扩展到几十路,这就为研制多路温度测控系统创造了便利条件。多通道智能温度传感器的典型产品有MAX1668、AD7417、AD7817、MAX1805和LM83。3.2 智能温度传感器典型产品的技术指标智能温度传感器典型产品的技术指标,详见表31表3-1智能温度传感器典型产品的技术指标3.3 单片机AT89C2051的简介单片机AT89C2051 具有低电压供电和小体积等特点,两个端口刚好满足电路系统的设计需要,很适合便携式产品的设计使用,系统可用二节电池供电. AT89C2051 提供如下的标准功能:2KB 闪速存贮器,128B 内部RAM,15 根I/O 口引线,两个16 位定时器/计数器,一个五向量两极中断结构,一个全双工串行口,一个精密模拟比较器以及片内振荡器和时钟电路。此外,AT89C2051 采用可降到0 频率的静态逻辑操作设计,并支持两种可选的软件节电工作方式,即空闲方式和掉电方式。在空闲方式下,CPU 停止工作,但允许内部RAM、定时器、计数器、串行口和中断系统继续工作。在掉电方式 下,保存RAM 的内容,但振荡器停止工作,并禁止所有其部件工作,直到下一个复位。 AT89C51 的结构框与AT89C51 类似。现将AT89C51 的主要特性归纳如下: 和MCS51 产品兼容。 2KB可重编程闪速存储器。 耐久性:1000次写/擦除周期。 2.76V的工作范围。 全静态操作:0Hz24MHz。 128字节内部RAM。3.4 单片机AT89C2051的引脚图 图3-2单片机AT89C2051引脚图3.5 本章小结 本章主要讲述了智能温度传感器典型产品及其指标,单片机的的简介和引脚图。第四章 DS18B20数字温度计4.1 DS18B20温度传感器的性能特点DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现位的数字值读数方式。DS18B20的性能特点如下:独特的单线接口仅需要一个端口引脚进行通信;多个DS18B20可以并联在惟一的三线上,实现多点组网功能;无须外部器件;可通过数据线供电,电压范围为3.05.5;零待机功耗;温度以或位数字;用户可定义报警设置;报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;4.2 DS18B20温度传感器的内部结构框图及设置DS18B20采用脚PR35封装或脚SOIC封装,其内部结构框图如图4-1所示。C64 位ROM和单线接口高速缓存存储器与控制逻辑温度传感器高温触发器TH低温触发器TL配置寄存器8位CRC发生器Vdd I/O图4-1 DS18B20内部结构64位ROM的结构开始位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。温度报警触发器和,可通过软件写入户报警上下限。DS18B20温度传感器的内部存储器还包括一个高速暂存和一个非易失性的可电擦除的EERAM。高速暂存RAM的结构为字节的存储器,结构如图4-2所示。头个字节包含测得的温度信息,第和第字节和的拷贝,是易失的,每次上电复位时被刷新。第个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。该字节各位的定义如图3所示。低位一直为,是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为,用户要去改动,R1和0决定温度转换的精度位数,来设置分辨率。温度 LSB温度 MSBTH用户字节1TL用户字节2配置寄存器保留保留保留CRC图4-2 DS18B20字节定义由表4-1可见,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。高速暂存的第、字节保留未用,表现为全逻辑。第字节读出前面所有字节的CRC码,可用来检验数据,从而保证通信数据的正确性。当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第、字节。单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625LSB形式表示。当符号位时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。表4-2是一部分温度值对应的二进制温度数据。表4-1 DS18B20温度转换时间表 DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、T字节内容作比较。若TH或TTL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行报警搜索。在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器的脉冲输入。器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将55所对应的一个基数分别置入减法计数器、温度寄存器中,计数器和温度寄存器被预置在55所对应的一个基数值。减法计数器对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器的预置值减到时,温度寄存器的值将加,减法计数器的预置将重新被装入,减法计数器重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。表4-2一部分温度对应值表温度/二进制表示十六进制表示+1250000 0111 1101 000007D0H+850000 0101 0101 00000550H+25.06250000 0001 1001 00000191H+10.1250000 0000 1010 000100A2H+0.50000 0000 0000 00100008H00000 0000 0000 10000000H-0.51111 1111 1111 0000FFF8H-10.1251111 1111 0101 1110FF5EH-25.06251111 1110 0110 1111FE6FH-551111 1100 1001 0000FC90H另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作按协议进行。操作协议为:初使化DS18B20(发复位脉冲)发ROM功能命令发存储器操作命令处理数据。图4-3 DS18B20与单片机的接口电路4.3DS18B20温度传感器与单片机的接口电路DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。另一种是寄生电源供电方式,如图4-3 所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。采用寄生电源供电方式时VDD端接地。由于单线制只有一根线,因此发送接口必须是三态的。4.4本章小结 本章主要讲述的是DS18B20温度传感器的性能特点,内部结构以及与单片机的接口电路。第五章 数字温度计的设计5.1 总体设计方案在单片机电路设计中,使用传感器,是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。5.2方案的总体设计框图温度计电路设计总体设计方框图如5-1所示,控制器采用单片机AT89C2051,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。图5-1总体设计方框图主 控 制 器LED显 示温 度 传 感 器单片机复位时钟振荡报警点按键调整 5.2.1主控制器在第三章中已经提到单片机AT89C2051,在此详细介绍一下各引脚的功能及其有优点。单片机AT89C2051具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。AT89C2051 的引脚 AT89C2051 采用引脚双列直插式封装,现将各引脚的功过能说明如下。 Vcc(20):电源电压端。 GND(10):地端。 RST(1):复位输入端。当RST 引脚出现两个机器周期的高电平时,单片机复位。复位后,AT89C2051 内部专用寄存器及I/O 口的处置与8051的情况一样,而内部的状态保 持不变。 XTAL1(5):振荡器反相放大器的输入和内部时钟发生器的输入端。 XTAL1(4):振荡器反相放大器的输出端。 P1 口:P1口是一个8位双向I/O 口。P1.2-P1.3 引脚内部接有上拉电阻。P1.0 和P1.1 分别作为片内精密模拟比较器的同相输入(AIN0)和反相输入(AIN1)。P1 口输出缓冲器可吸收20mA 电流并能直接驱动LED 显示。当P1 口的锁存器写入“1”时,P1 口可作为输入 端。当引脚P1.2-P1.7 用作输入并被外部拉低时,它们将因内部的上拉电阻而流出电流(II1 )。P1 口还在闪速编程和程序校验期间接受代码数据。 P3 口:P3 口的P3.0-P3.5 和P3.7 是带有内部上拉电阻的七个双向I/O 引脚。P3.6 用于固定输入片内比较器的输入信号并且它作为一通用I/O 引脚而不能访问。P3 口缓冲器 可吸收20mA 电流。当P3 口锁存器写入“1”时,它们被上拉电阻拉高并可作为输入端。用作输入时,被外部拉低的P3 口引脚将由于上拉电阻而流出电流(Ii1 )。P3 口还接收一些用于闪速存储器编程和程序校验的控制信号。 P3 口还用于实现AT89C2051 的一些特殊功能,这些特殊功能定义如下: 口线 特殊功能 P3.0 RXD(串行口输入端) P3.1 TXD(串行口输出端) P3.2 /INT0(外部中断0) P3.3 /INT1(外部中断1) P3.4 T0(定时器0外部输入) P3.5 T1(定时器1外部输入)下面就目前国内全胜较多的两种单片机,讨论一下2051的性能价格比1、与80C31系统相比较如果需要构成一个80C31的最小系统的话,除了CPU之外,至少需要一片27C64,而系统的有效引脚和89C2051基本相同。从元器件的成本,电路板的面积和加密性来看,使用89C2051都是合算的。 2、与PIC单片机比较目前,国内小型的单片机全胜较多的有PIC系列,89C2051与PIC相对应芯片比较有如下特点:89C2051的价格高于PIC的OTP型号,但大大低于PIC的EPROM型,89C2051片内不含WatchDog,这是89C2051的不足之处,中断系统堆栈结构、串等通讯笔定时器系统都大大强于PIC系统。由于PIC芯片中无标准串等口,所以在单片机的联网应用上面,PIC不太适合。与PIC相比2051更适合于较复杂的应用场合,适合一些软件需要多次修改的应用。3、在应用方面就目前中国市场的情况来看,89C2051有很大的市场。其原因有下列几点:(1)2051采用的是MCS51的核心,十分容易为广大用户所接受;(2)2051内部基本保持了80C31的硬件I/O功能;(3)2051的Flash存贮器技术,可重复擦/写1000次以上,容易解闷调试手段;(4)更适合小批量系统的应用,容易实现软件的升级。89C2051适合于家用电器控制,分布式测控网络,I/O量不足不是很大的应用系统。5.2.2显示电路显示电路采用3位共阳LED数码管,从P3口RXD,TXD串口输出段码。5.2.3温度传感器DS18B20 的测温原理如图52 所示. 图中低温度系数晶振的振荡频率受温度的影响很小,用于产生的信号作为减法计数器1;高温度系数晶振随温度变化其振荡频率明显变,所以产生的信号作为减法计数器2 的脉冲输入。图中还隐含着计数门,当计数门打开时,DS18B20 对低温度系数振荡器产生的时钟脉冲进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器决定,每次测量前,首先将55所对应的一个基数分别置入减法计数器1、温度寄存器中,减法计数器1和温度寄存器被预置在55所对应的一个基数值。图5-2 DS18B20 测温原理图减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置值将重新被装入,减法计数器1 重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0 时,停止温度寄存器值的累加,此时温度寄存器中的数值就是所测温度值。图28中的斜 率累加器用于温度补偿和修正测温过程中的非线形性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直到温度寄存器值达到被测温度值。 另外,由于DS18B20 单线通信功能是分时完成的,它有严格的时隙概念,因此读写时很重要。系统对DS18B20 的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲) 发ROM功能命令发存储器操作命令 处理数据。5.2.3DS18B20温度传感器与单片机的接口电路 在上一章中一明确说明,在此略去。5.3系统整体硬件电路5.3.1主板电路系统整体硬件电路包括,传感器数据采集电路,温度显示电路,上下限报警调整电路,单片机主板电路等,如图5-1 所示。图5-1中有三个独立式按键可以分别调整温度计的上下限报警设置,图中蜂鸣器可以在被测温度不在上下限范围内时,发出报警鸣叫声音,同时LED数码管将没有被测温度值显示,这时可以调整报警上下限,从而测出被测的温度值。 图5-1 单片机主板电路图5-1 中的按健复位电路是上电复位加手动复位,使用比较方便,在程序跑飞时,可以手动复位,这样就不用在重起单片机电源,就可以实现复位。5.3.2显示电路显示电路是使用的串口显示,这种显示最大的优点就是使用口资源比较少,只用p3口的RXD,和TXD,串口的发送和接收,四只数码管采用74LS164右移寄存器驱动,显示比较清晰。硬件原理图图5-2 硬件原理图5.4系统软件算法分析系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序等。5.4.1主程序主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。这样可以在一秒之内测量一次被测温度,其程序流程见图5-3所示。Y发DS18B20复位命令发跳过ROM命令发读取温度命令读取操作,CRC校验9字节完?CRC校验正?确?移入温度暂存器结束NNY初始化调用显示子程序1S到?初次上电读出温度值温度计算处理显示数据刷新发温度转换开始命令NYNY图5-3 主程序流程图 图5-4读温度流程图5.4.2读出温度子程序读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。其程序流程图如图5-4示发DS18B20复位命令发跳过ROM命令发温度转换开始命令 结束 图5-5 温度转换流程图5.4.3温度转换命令字程序温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时转换时间约为750ms,在本程序设计中采用1s显示程序延时法等待转换的完成。温度转换命令子程序流程图如上图,图5-5所示5.4.4计算温度子程序计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值正负的判定,其程序流程图如图5-6所示。 开始温度零下?温度值取补码置“”标志计算小数位温度BCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碳捕集利用工程环境影响评估方案
- 2025年抽屉原理真题演练及答案
- 园林古建筑设计与规划方案
- 离婚协议中解除婚约协议及个人债务承担范本
- 学前特殊体质幼儿入托协议安全责任免除及健康管理
- 双方协议离婚房产分割及子女监护权合同
- 文化创意产业园区项目招投标合同管理与产业升级
- 历年安全员考及答案1及答案
- 热电联产绿色建材项目建设工程方案
- 电力营销知识题库及答案
- 中药草乌课件
- DL-T 892-2021 电站汽轮机技术条件
- 手术室核心制度
- 2023年社区工作者面试题库及答案
- 火力发电土建项目监理实施细则
- 外国经济学说史课件
- 上海肿瘤医院病理报告
- 普通动物学课件
- 医院疼痛科建设与管理的标准化经验
- 浙江优瑞欣化学有限公司四甲基二硅氧烷、端氢硅油、环氧双封头、六甲基二硅氧烷、副产盐酸、含氢硅油和四甲基硅烷混合物产品新建项目环境影响报告书
- 境外社会安全与突发事件应急管理
评论
0/150
提交评论