2019高考数学一轮复习精编课件:合情推理与演绎推理.ppt_第1页
2019高考数学一轮复习精编课件:合情推理与演绎推理.ppt_第2页
2019高考数学一轮复习精编课件:合情推理与演绎推理.ppt_第3页
2019高考数学一轮复习精编课件:合情推理与演绎推理.ppt_第4页
2019高考数学一轮复习精编课件:合情推理与演绎推理.ppt_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 推理根据一个或几个已知事实 或假设 来确定一个新的判断 这种思维方式叫做推理 推理一般分为与两类 合情推理 演绎推理 2 合情推理 部分对象 全部 个别事实 一般结论 类似 特征 某些已知特征 部分 整体 个别 一般 特殊 特殊 3 演绎推理 1 定义 从出发 推出下的结论 我们把这种推理称为演绎推理 2 特点 演绎推理是由的推理 3 模式 三段论 三段论 是演绎推理的一般模式 包括 一般性的原理 某个特殊情况 一般到特殊 一般原理 特殊情况 M是P S是M 1 合情推理与演绎推理的主要区别是什么 提示 合情推理包括归纳推理和类比推理 归纳推理是由个别到一般 类比推理是由特殊到特殊的推理 得到的结论不一定正确 演绎推理是由一般到特殊的推理 在大前提和小前提都正确的情况下 得到的结论一定是正确的 2 演绎推理所获得的结论就一定可靠吗 提示 只要前提是真实的 推理的形式是正确的 那么结论必定是真实的 1 数列2 5 11 20 x 47 中的x等于 A 28B 32C 33D 27解析 由数列的特点知5 2 3 11 5 6 20 11 9 x 20 12 故x 32 答案 B 解析 由类比推理的特点可知C正确 答案 C 3 2012 湖北高考 函数f x xcos2x在区间 0 2 上的零点的个数为 A 2B 3C 4D 5答案 D 4 从1 12 2 3 4 32 3 4 5 6 7 52中得出的一般性结论是 解析 由条件可归纳得出一般性结论为n n 1 n 2n 2 2n 1 2 答案 n n 1 n 2n 2 2n 1 2 5 在平面几何中 关于正三角形的性质 有真命题 正三角形内任一点到各边的距离之和是一个定值 类比平面几何的上述性质 写出正四面体的一个真命题 答案 正四面体内任一点到各个面的距离之和是一个定值 考向探寻 1 由部分到整体 由个别到一般归纳出一般性命题 2 利用归纳推理得到一般结论 进而解决实际问题 归纳推理 典例剖析 1 2012 江西高考 观察下列各式 a b 1 a2 b2 3 a3 b3 4 a4 b4 7 a5 b5 11 则a10 b10 A 28B 76C 123D 199 1 解析 记an bn f n 则f 3 f 1 f 2 1 3 4 f 4 f 2 f 3 3 4 7 f 5 f 3 f 4 11 通过观察不难发现f n f n 1 f n 2 n N n 3 则f 6 f 4 f 5 18 f 7 f 5 f 6 29 f 8 f 6 f 7 47 f 9 f 7 f 8 76 f 10 f 8 f 9 123 所以a10 b10 123 答案 C 归纳的实质是根据前几项 猜想出一般规律 归纳推理是由部分到整体 由特殊到一般的推理 由归纳推理所得的结论不一定正确 通常归纳的个体数越多 越具有代表性 那么推广的一般性命题也会越可靠 归纳推理是一种发现一般性规律的重要方法 1 归纳是依据特殊现象推断出一般现象 因而由归纳所得的结论超越了前提所包含的范围 2 归纳的前提是特殊的情况 所以归纳是立足于观察 经验或实验的基础之上的 活学活用 1 1 设f0 x sinx f1 x f 0 x f2 x f 1 x fn x fn 1 x n N 则f2014 x 等于 A sinxB sinxC cosxD cosx解析 由题意可得f1 x sinx cosx f2 x cosx sinx f3 x sinx cosx f4 x cosx sinx f5 x sinx cosx f1 x f6 x cosx sinx f2 x fn 4 x fn x 故可猜测fn x 是以4为周期的函数 则f2014 x f4 503 2 x f2 x sinx 答案 B 考向探寻 1 从特殊到特殊进行类比推理 2 利用类比推理得到的结论解决问题 类比推理 典例剖析 1 2013 晋中模拟 给出下面类比推理命题 其中Q为有理数集 R为实数集 C为复数集 若a b R 则a b 0 a b 类比推出 若a b C 则a b 0 a b 若a b c d R 则复数a bi c di a c b d 类比推出 若a b c d Q 则a b c d a c b d 若a b R 则a b 0 a b 类比推出 若a b C 则a b 0 a b 若x R 则 x 1 1 x 1 类比推出 若z C 则 z 1 1 z 1 其中类比正确的为A B C D 2 12分 2013 佛山模拟 阅读下面材料 根据两角和与差的正弦公式 有sin sin cos cos sin sin sin cos cos sin 由 得sin sin 2sin cos 答案 A cos2A cos2B 1 cos2C可化为 1 2sin2A 1 2sin2B 1 1 2sin2C 9分 sin2A sin2C sin2B 10分设 ABC的三个内角A B C所对的边分别为a b c 由正弦定理可得a2 c2 b2 11分 ABC为直角三角形 12分 1 类比推理是根据两个对象有部分属性类似 推出这两个对象其他属性亦类似的一种推理方法 2 在数学中 类比是发现概念 方法 定理和公式的重要手段 数与式 平面与空间 一元与多元 低次与高次 相等与不等 有限与无限之间有不少结论 都是先用类比法猜想 而后加以证明的 类比推理得到的结论不一定正确 其正确性有待进一步证明 活学活用 2 观察下表的第一列 填空 考向探寻 1 用演绎推理证明一个命题是真命题 2 判断演绎推理运用的正确性 演绎推理 典例剖析 1 下面几种推理过程是演绎推理的是A 两条直线平行 同旁内角互补 由此若 A B是两条平行直线被第三条直线所截得的同旁内角 则 A B 180 B 某校高三 1 班有55人 高三 2 班有54人 高三 3 班有52人 由此得出高三所有班的人数都超过50人 1 解析 两条直线平行 同旁内角互补 大前提 A B是两条平行直线被第三条直线所截得的同旁内角 小前提 A B 180 结论 故A是演绎推理 而B D是归纳推理 C是类比推理 答案 A 1 演绎推理是由一般性的结论推出特殊性结论的一种推理模式 是一种必然性推理 演绎推理的前提与结论之间有蕴含关系 只要前提是真实的 推理的形式是正确的 那么结论必定是真实的 2 演绎推理的主要模式 就是由大前提 小前提推出结论的三段论式推理 活学活用 3 用三段论证明函数y x2 2x在 1 上是增函数 如图所示 坐标纸上的每个单元格的边长为1 由下往上的六个点 1 2 3 4 5 6的横 纵坐标分别对应数列 an n N 的前12项 如下表所示 归纳推理中由于归纳不准致误 按如此规律下去 则a2009 a2010 a2011 A 1003B 1005C 1006D 2010A或C 解 a1 1 a2 1 a3 1 a4 2 a5 2 a6 3 a7 2 a8 4 这个数列的规律是奇数项为1 1 2 2 3 偶数项为1 2 3 故a2009 a2011 0 a2010 1005 故a2009 a2010 a2011 1005 故选

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论