人教版七年级数学易错题讲解及答案.docx_第1页
人教版七年级数学易错题讲解及答案.docx_第2页
人教版七年级数学易错题讲解及答案.docx_第3页
人教版七年级数学易错题讲解及答案.docx_第4页
人教版七年级数学易错题讲解及答案.docx_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学而思教育 初一上册数学 易考 易错题 累积 2016冬第一章 有理数易错题练习一判断 a与-a必有一个是负数 .在数轴上,与原点0相距5个单位长度的点所表示的数是5.在数轴上,A点表示1,与A点距离3个单位长度的点所表示的数是4.在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. 绝对值小于4.5而大于3的整数是3、4. 如果-x=- (-11),那么x= -11. 如果四个有理数相乘,积为负数,那么负因数个数是1个. 若则.绝对值等于本身的数是1.二填空题若=a-1,则a的取值范围是: . 式子3-5x的最 值是 .在数轴上的A、B两点分别表示的数为-1和-15,则线段AB的中点表示的数是 .水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是_.在数轴上的A、B两点分别表示的数为5和7,将A、B两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移 个单位长度.已知a=5,b=3,a+b= a+b,则a-b的值为 ;如果a+b= -a-b,则a-b的值为 .化简-3= . 如果ab0,那么 . 在数轴上表示数-的点和表示的点之间的距离为: .,则a、b的关系是_. 若0,0,则ac 0.一个数的倒数的绝对值等于这个数的相反数,这个数是 .三.解答题已知a、b互为倒数,- c与互为相反数,且x=4,求2ab-2c+d+的值.数a、b在数轴上的对应点如图,化简:a-b+b-a+b-a-a.已知a+5=1,b-2=3,求a-b的值. 若|a|=4,|b|=2,且|ab|=ab,求a- b的值把下列各式先改写成省略括号的和的形式,再求出各式的值(-7)- (-4)- (9)(2)- (-5); (-5) - (7)- (-6)4 近似数2.40104精确到百分位,它的有效数字是2,4;在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?若x、y是有理数,且|x|-x=0,|y|+y=0,|y|x|,化简|x|-|y|-|x+y|.已知abcd0,试说明ac、-ad、bc、bd中至少有一个取正值,并且至少有一个取负值.已知a0,b0,判断(a+b)(c-b)和(a+b)(b-c)的大小.四计算下列各题:(-42.75)(-27.36)-(-72.64)(+42.75) 有理数易错题练习一多种情况的问题(考虑问题要全面)(1)已知一个数的绝对值是3,这个数为_; 此题用符号表示:已知则x=_;则x=_;(2)绝对值不大于4的负整数是_;(3)绝对值小于4.5而大于3的整数是_(4)在数轴上,与原点相距5个单位长度的点所表示的数是_;(5)在数轴上,A点表示1,与A点距离3个单位长度的点所表示的数是_;(6) 平方得的数是_;此题用符号表示:已知则x=_;(7)若|a|=|b|,则a,b的关系是_;(8)若|a|=4,|b|=2,且|ab|=ab,求ab的值正数0负数二特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取12个特值代入检验,做出正确的选择(1)若a是负数,则a_a;是一个_数;(2)已知则x满足_;若则x满足_;若x=-x, x满足_;若_ ;(3)有理数a、b在数轴上的对应的位置如图所示: 则( ) Aa + b0 Ba + b0; Cab = 0 Dab0(4)如果a、b互为倒数,c、d互为相反数,且,则代数式2ab-(c+d)+m2=_。(5)若ab0,则的值为_;(注意0没有倒数,不能做除数)在有理数的乘除乘方中字母带入的数多为1,0,-1,进行检验(6)一个数的平方是1,则这个数为_;用符号表示为:若则x=_;一个数的立方是-1,则这个数为_;倒数等于它自身的数为_;三一些易错的概念(1)在有理数集合里,_最大的负数,_最小的正数,_绝对值最小的有理数 (2)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_ (3)若|a-1|b+2|=0,则a=_;b=_;(属于“0+0=0”型)(4)下列代数式中,值一定是正数的是( )Ax2 B.|x+1| C.(x)2+2 D.x2+1(5)现规定一种新运算“*”:a*b=,如3*2=9,则()*3=( )(6)判断:(注意0的问题) 0除以任何数都得0;( )任何一个数的平方都是正数,( )a的倒数是.( )两个相反的数相除商为-1.( )0除以任何数都得0.( )有理数a的平方与它的立方相等,那么a= 1 ;四比较大小 -(-4) -3.14 - 五易错计算 -22 -(1-0.2)(-2)3 ()(-60) 六应用题1. 某人用400元购买了8套儿童服装,准备以一定价格出售,如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,-3,+2,+1,-2,-1,0,-2(单位:元)(1)当他卖完这八套儿童服装后是盈利还是亏损?(2)盈利(或亏损)了多少钱?有理数易错题整理 1填空:(1)当a_时,a与a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是_;(3)在数轴上,A点表示1,与A点距离3个单位长度的点所表示的数是_;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_2用“有”、“没有”填空:在有理数集合里,_最大的负数,_最小的正数,_绝对值最小的有理数3用“都是”、“都不是”、“不都是”填空:(1)所有的整数_负整数;(2)小学里学过的数_正数;(3)带有“”号的数_正数;(4)有理数的绝对值_正数;(5)若|a|b|=0,则a,b_零;(6)比负数大的数_正数4用“一定”、“不一定”、“一定不”填空:(1)a_是负数;(2)当ab时,_有|a|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数_大于距原点较远的点所表示的数;(4)|x|y|_是正数;(5)一个数_大于它的相反数;(6)一个数_小于或等于它的绝对值;5把下列各数从小到大,用“”号连接:并用“”连接起来8填空:(1)如果x=(11),那么x=_;(2)绝对值不大于4的负整数是_;(3)绝对值小于4.5而大于3的整数是_9根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和; (2)a与b的相反数的和乘以a,b两数差的绝对值; (3)一个分数的分母是x,分子比分母的相反数大6; (4)x,y两数和的相反数乘以x,y两数和的绝对值 10代数式|x|的意义是什么?11用适当的符号(、)填空:(1)若a是负数,则a_a;(2)若a是负数,则a_0;(3)如果a0,且|a|b|,那么a_ b12写出绝对值不大于2的整数 13由|x|=a能推出x=a吗?14由|a|=|b|一定能得出a=b吗?15绝对值小于5的偶数是几? 16用代数式表示:比a的相反数大11的数 17用语言叙述代数式:a3 18算式35729如何读?19把下列各式先改写成省略括号的和的形式,再求出各式的值(1)(7)(4)(9)(2)(5);(2)(5)(7)(6)420判断下列各题是否计算正确:如有错误请加以改正;(2)5|5|=10;21用适当的符号(、)填空:(1)若b为负数,则ab_a;(2)若a0,b0,则ab_0;(3)若a为负数,则3a_322若a为有理数,求a的相反数与a的绝对值的和23若|a|=4,|b|=2,且|ab|=ab,求ab的值24列式并计算:7与15的绝对值的和25用简便方法计算:26用“都”、“不都”、“都不”填空:(1)如果ab0,那么a,b_为零;(2)如果ab0,且ab0,那么a,b_为正数;(3)如果ab0,且ab0,那么a,b_为负数;(4)如果ab=0,且ab=0,那么a,b_为零27填空:(3)a,b为有理数,则ab是_;(4)a,b互为相反数,则(ab)a是_28填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是_;31计算下列各题:(5)15126534下列叙述是否正确?若不正确,改正过来(1)平方等于16的数是(4)2;(2)(2)3的相反数是23;35计算下列各题;37下列各题中的横线处所填写的内容是否正确?若有误,改正过来(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x0,那么x3=2738用“一定”、“不一定”或“一定不”填空:(1)有理数的平方_是正数;(2)一个负数的偶次幂_大于这个数的相反数;(3)小于1的数的平方_小于原数;(4)一个数的立方_小于它的平方39计算下列各题:(1)(32)3323; (2)24(2)4; (3)2(4)-2;第三章 整式加减易做易错题选 例1 下列说法正确的是( ) A. 的指数是0B. 没有系数 C. 3是一次单项式D. 3是单项式 分析:正确答案应选D。这道题主要是考查学生对单项式的次数和系数的理解。选A或B的同学忽略了的指数或系数1都可以省略不写,选C的同学则没有理解单项式的次数是指字母的指数。 例2 多项式的次数是( ) A. 15次 B. 6次 C. 5次 D. 4次 分析:易错答A、B、D。这是由于没有理解多项式的次数的意义造成的。正确答案应选C。 例3 下列式子中正确的是( ) A. B. C. D. 分析:易错答C。许多同学做题时由于马虎,看见字母相同就误以为是同类项,轻易地就上当,学习中务必要引起重视。正确答案选B。 例4 把多项式按的降幂排列后,它的第三项为( ) A. 4B. C. D. 分析:易错答B和D。选B的同学是用加法交换律按的降幂排列时没有连同“符号”考虑在内,选D的同学则完全没有理解降幂排列的意义。正确答案应选C。 例5 整式去括号应为( ) A. B. C. D. 分析:易错答A、D、C。原因有:(1)没有正确理解去括号法则;(2)没有正确运用去括号的顺序是从里到外,从小括号到中括号。 例6 当取( )时,多项式中不含项 A. 0 B. C. D. 分析:这道题首先要对同类项作出正确的判断,然后进行合并。合并后不含项(即缺项)的意义是项的系数为0,从而正确求解。正确答案应选C。 例7 若A与B都是二次多项式,则AB:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零。上述结论中,不正确的有( ) A. 2个B. 3个C. 4个D. 5个 分析:易错答A、C、D。解这道题时,尽量从每一个结论的反面入手。如果能够举出反例即可说明原结论不成立,从而得以正确的求解。 例8 在的括号内填入的代数式是( ) A. B. C. D. 分析:易错答D。添后一个括号里的代数式时,括号前添的是“”号,那么这两项都要变号,正确的是A。 例9 求加上等于的多项式是多少? 错解: 这道题解错的原因在哪里呢? 分析:错误的原因在第一步,它没有把减数()看成一个整体,而是拆开来解。 正解: 答:这个多项式是 例10 化简 错解:原式 分析:错误的原因在第一步应用乘法分配律时,这一项漏乘了3。 正解:原式 巩固练习 1. 下列整式中,不是同类项的是( )A. B. 1与2C. 与D. 2. 下列式子中,二次三项式是( ) A. B. C. D. 3. 下列说法正确的是( )A. 的项是B. 是多项式C. 是三次多项式D. 都是整式 4. 合并同类项得( ) A. B. 0 C. D. 5. 下列运算正确的是( ) A. B. C. D. 6. 的相反数是( ) A. B. C. D. 7. 一个多项式减去等于,求这个多项式。 参考答案1. D2. C3. B4. A5. A6. C7. 第五章一元一次方程 查漏补缺题l 解方程和方程的解的易错题一元一次方程的解法:重点:等式的性质,同类项的概念及正确合并同类项,各种情形的一元一次方程的解法;难点:准确运用等式的性质进行方程同解变形(即进行移项,去分母,去括号,系数化一等步骤的符号问题,遗漏问题);学习要点评述:对初学的同学来讲,解一元一次方程的方法很容易掌握,但此处有点类似于前面的有理数混合运算,每个题都感觉会做,但就是不能保证全对。从而在学习时一方面要反复关注方程变形的法则依据,用法则指导变形步骤,另一方面还需不断关注易错点和追求计算过程的简捷。易错范例分析:例1.(1)下列结论中正确的是( )A.在等式3a-6=3b+5的两边都除以3,可得等式a-2=b+5B.在等式7x=5x+3的两边都减去x-3,可以得等式6x-3=4x+6C.在等式-5=0.1x的两边都除以0.1,可以得等式x=0.5D.如果-2=x,那么x=-2(2)解方程20-3x=5,移项后正确的是( )A.-3x=5+20 B.20-5=3x C.3x=5-20 D.-3x=-5-20(3)解方程-x=-30,系数化为1正确的是( )A.-x=30 B.x=-30 C.x=30 D. 4)解方程 ,下列变形较简便的是( )A.方程两边都乘以20,得4(5x-120)=140B.方程两边都除以 ,得 C.去括号,得x-24=7D.方程整理,得 例2.(1)若式子 3nxm+2y4和 -mx5yn-1能够合并成一项,试求m+n的值。(2)下列合并错误的个数是( )5x6+8x6=13x123a+2b=5ab8y2-3y2=56anb2n-6a2nbn=0(A)1个 (B)2个 (C)3个 (D)4个例3.解下列方程(1)8-9x=9-8x(2) (3) (4) 解:(1)8-9x=9-8x -9x+8x=9-8 -x=1 x=1易错点关注:移项时忘了变号;(2) 法一: 4(2x-1)-3(5x+1)=248x-4-15x-3=24-7x=31 易错点关注:两边同乘兼约分去括号,有同学跳步急赶忘了, 4(2x-1)化为8x-1,分配需逐项分配,-3(5x+1)化为-15x+3忘了去括号变号;法二:(就用分数算) 此处易错点是第一步拆分式时将 ,忽略此处有一个括号前面是负号,去掉括号要变号的问题,即 ;(3) 6x-3(3-2x)=6-(x+2)6x-9+6x=6-x-212x+x=4+913x=13x=1易错点关注:两边同乘,每项均乘到,去括号注意变号;(4) 2(4x-1.5)-5(5x-0.8)=10(1.2-x) 8x-3-25x+4=12-10x -7x=11 例5.根据以下两个方程解的情况讨论关于x的方程ax=b(其中a、b为常数)解的情况。(1)3x+1=3(x-1)(2) 解:(1)3x+1=3(x-1)3x-3x=-3-10x=-4显然,无论x取何值,均不能使等式成立,所以方程3x+1=3(x-1)无解。(2) 0x=0显然,无论x取何值,均可使方程成立,所以该方程的解为任意数。由(1)(2)可归纳:对于方程ax=b当a0时,它的解是 ;当a=0时,又分两种情况:当b=0时,方程有无数个解,任意数均为方程的解;当b0时,方程无解。二、从实际问题到方程(一)本课重点,请你理一理列方程解应用题的一般步骤是:(1)“找”:看清题意,分析题中及其关系,找出用来列方程的_;(2)“设”:用字母(例如x)表示问题的_;(3)“列”:用字母的代数式表示相关的量,根据_列出方程;(4)“解”:解方程;(5)“验”:检查求得的值是否正确和符合实际情形,并写出答(6)“答”:答出题目中所问的问题。三、行程问题(一)本课重点,请你理一理1.基本关系式:_ _ ;2.基本类型: 相遇问题; 相距问题; _ ;3.基本分析方法:画示意图分析题意,分清速度及时间,找等量关系(路程分成几部分).4.航行问题的数量关系:(1)顺流(风)航行的路程=逆流(风)航行的路程(2)顺水(风)速度=_ 逆水(风)速度=_(二)易错题,请你想一想1.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分乙的速度是甲速度的3/2倍,问(1)经过多少时间后两人首次遇(2)第二次相遇呢? 思路点拨:此题是关于行程问题中的同向而行类型。由题可知,甲、乙首次相遇时,乙走的路程比甲多一圈;第二次相遇他们之间的路程差为两圈的路程。所以经过8分钟首次相遇,经过16分钟第二次相遇。 四、调配问题(一)本课重点,请你理一理初步学会列方程解调配问题各类型的应用题;分析总量等于_一类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论