(基础数学专业论文)Bloch函数到QK型函数空间的距离.pdf_第1页
(基础数学专业论文)Bloch函数到QK型函数空间的距离.pdf_第2页
(基础数学专业论文)Bloch函数到QK型函数空间的距离.pdf_第3页
(基础数学专业论文)Bloch函数到QK型函数空间的距离.pdf_第4页
(基础数学专业论文)Bloch函数到QK型函数空间的距离.pdf_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

汕头大学 硕士学位论文 bloch函数到q型函数空间的距离 姓名 陈武福 申请学位级别 硕士 专业 基础数学 指导教师 娄增建 20090501 jones carleson bloch bmoa jones bloch m obius bloch qk bloch qk k carleson bloch qk bloch qk qk k carleson abstract we gave several distance formulas from bloch functions to some qk type spaces which generalize distance formulas from bloch functions to bmoa space by jones and to some m obius invariant spaces by ruhan zhao the fi rst part of the paper provides the defi nitions of some function spaces including bloch space and qk type spaces preliminaries and related known results the second part of the paper gives the distance formulas from bloch func tions to some qk type spaces which are characterized by using the k carleson measure the main theorems and their proofs are contained in this part key words bloch functions qkspaces qk type spaces k carleson measure distance 1 hardy hp 0 p bloch b b0 hp hp 5 26 2 john nirenberg bmo 31 feff erman h1 bmo bmo hardy h1 bmo 3 aulaskari lappan qp qp bmoa bloch dirichlet 1996 f p q s qp 2000 ess en qk qk p q f p q s h bmoa b 17 h bmoa h p 17 0 p 1 qp1 qp2 bmoa 19 0 p1 p2 0 1 qk b qk0 b 4 0 9 jones carleson bloch bmoa bloch 7 tjani bloch bloch carleson jones bloch f p p 2 s 0 s 1 1 p carleson 1 carleson bloch bloch carleson bloch qk qk bloch qk k bloch qk qk p q c a b a b c1 c2 c1a 6 b 6 c2a 2 1 1 d z z 1 d z z 1 d h d d a d g z a log 1 a z g z a a a z a z 1 az m obius 1 1 f h d f bloch b f kfkb sup z d 1 z 2 f z f h d lim z 1 1 z 2 f z 0 f bloch b0 b banach kfk b f 0 kfkb bloch bloch bloch bloch bloch 3 bloch 14 20 2 21 22 23 24 6 1 2 0 p 2 q 0 s 1 q s f h d f f p q s 14 f kfkp p q s sup a d z d f z p 1 z 2 qgs z a da z da z d lebesgue f p q s f lim a 1 z d f z p 1 z 2 qgs z a da z 0 f f0 p q s p 2 q 0 s 1 f p q s bmoa p 2 q 0 0 s 1 bmoa f p q s bmoa bmo 1 3 0 p 2 q k 0 f qk p q f kfkp qk p q sup a d z d f z p 1 z 2 qk 1 a z 2 da z f lim a 1 z d f z p 1 z 2 qk 1 a z 2 da z 0 f qk0 p q qk p q 10 p 2 q 0 qk p q qk0 p q qk qk0 6 qk qk0 qk m obius kf a kqk kfkqk 4 k k t ts 0 s 1 qk qk0 bloch bloch k a k b k t k 1 0 t 1 c k 2t k t t 0 k d r 1 0 k s ds s e r 1 k s ds s2 k s sup 0 t 1 k st k t 0 s k 6 k s k k k z 1 0 1 r2 qk log 1 r rdr qk p q 10 1 4 s i r d 1 i r 0 d s carleson sup i d s i i s i i i 1 s i d 5 carleson carleson 29 30 s carleson k carleson 1 5 d k carleson 6 sup i d z s i k 1 z i d z 0 1 distb f bmoa 2 inf f da z 1 z 2 carleson f z d f z 1 z 2 6 a carleson bloch bmoa b c carleson bloch f p p 2 s carleson bloch f0 p p 2 s b 0 s 1 1 p 0 q 0 f b 1 distb f f p p 2 s 2 inf f da z 1 z 2 2 s s carleson 3 inf supa d r f f z q 1 z 2 q 2 1 a z 2 sda z 4 inf supa d r f f z q 1 z 2 q 2gs z a da z c 0 s 1 1 p 0 q 0 f b 1 distb f f0 p p 2 s 2 distb f b0 3 inf f da z 1 z 2 2 s s carleson 4 inf lim a 1 r f f z q 1 z 2 q 2gs z a da z 0 5 inf lim a 1 r f f z q 1 z 2 q 2 1 a z 2 sda z 0 b a s 1 p 2 f p p 2 s bmoa a 1 2 c f0 p p 2 s b0 a b a bmoa qk b f p p 2 s qk p p 2 bloch qk qk p p 2 p 2 7 2 1 2 1 2 2 2 1 f b k d e k 2 0 q 0 1 distb f qk 2 inf f da z 1 z 2 2 k carleson 3 inf supa d r f f z q 1 z 2 q 2k g z a da z 4 inf supa d r f f z q 1 z 2 q 2k 1 a z 2 da z 2 2 2 p 0 q 0 k d e k 2 f b 1 distb f qk p p 2 2 inf f da z 1 z 2 2 k carleson 3 inf supa d r f f z q 1 z 2 q 2k g z a da z 4 inf supa d r f f z q 1 z 2 q 2k 1 a z 2 da z k t ts 0 s 1 qk f 2 0 s b 2 2 1 bloch qk0 c bloch qk0 b0 2 3 0 q 0 k d e k 2 f b 9 1 distb f qk0 2 distb f b0 3 inf f da z 1 z 2 2 k carleson 4 inf lim a 1 r f f z q 1 z 2 q 2k g z a da z 0 5 inf lim a 1 r f f z q 1 z 2 q 2k 1 a z 2 da z 0 2 2 2 1 f b 1 k1 k2 d e k1 2 k2 2 p1 2 k d e k 2 distb f qk p2 p2 2 distb f qk p1 p1 2 2 2 0 q k d e k 2 f h d 1 f qk bloch 2 f da z 1 z 2 2 k carleson 0 3 supa d r f f z q 1 z 2 q 2k g z a da z 0 4 supa d r f f z q 1 z 2 q 2k 1 a z 2 da z p1 2 k d e k 2 qk p1 p1 2 qk p2 p2 2 bloch 10 2 4 k d e k 2 1 s 0 c 0 z d z d 1 w tda w 1 zw 2 t s c 1 z s 2 1 2 4 2 2 2 2 2 3 6 3 1 3 2 2 2 k d f qk f z 2da z d k carleson 11 2 3 k d k carleson sup a d z d k 1 a z 2 d z 27 s carleson sup a d z d 1 a 2 1 az 2 sd z 0 k carleson 1 z 2 sd z s carleson 2 4 2 5 8 2 4 k carleson qk p p 2 2 5 qk 2 4 p 0 k d f qk p p 2 f z p 1 z 2 p 2da z k carleson 2 5 n k d k 2 f qk sup a d z d f n 1 z 2 1 z 2 2nk 1 a z 2 da z f3 2 6 f b f3 b f 3 z ckfkb 1 z 2 2 2 1 f3 f 3 z z f f w 1 w 2 1 zw 3 da w kfkb z d 1 1 zw 3 da w ckfkb 1 z 2 12 f 3 z 1 z 2 ckfkb f3 b 2 1 f 3 z z f wf w 1 w 2 1 zw 4 da w kfkb z d 1 1 zw 4 da w ckfkb 1 z 2 2 2 6 1 1 28 5 2 7 k e a w d z d k 1 a z 2 1 zw 4 da z c k 1 a w 2 1 w 2 2 u w d z w u w a 1 ei a z ei u 13 i z d k 1 a z 2 1 zw 4 da z k 1 a w 2 z d k 1 a z 2 k 1 a w 2 1 z w 4 da z k 1 a w 2 z d k 1 u 2 k 1 2 1 w w u 4 w u 2da u k 1 a w 2 z d k 1 u 2 1 2 1 u 2 k 1 2 1 w w u 4 w u 2da u k 1 a w 2 z d k 1 u 2 1 u 2 1 wu 4 1 w 2 2 1 w 2 4 1 wu 4 da u k 1 a w 2 1 w 2 2 z d k 1 u 1 u da u 2 k 1 a w 2 1 w 2 2 z 1 0 k 1 r 1 r r dr u r s 1 r 1 r i c k 1 a w 2 1 w 2 2 z 1 k s s 1 2 ds c k 1 a w 2 1 w 2 2 z 1 k s s2 ds c k 1 a w 2 1 w 2 2 2 7 14 2 4 k carleson 2 1 d1 d2 d3 d4 2 1 1 2 3 4 d1 d2 d2 d4 d3 d4 d1 cd2 f3 qk 2 5 sup a d z d f 3 z 2 1 z 2 2k 1 a z 2 da z 2 6 2 7 fubini sup a d z d f 3 z 2 1 z 2 2k 1 a z 2 da z ckfkbsup a d z d f 3 z k 1 a z 2 da z ckfkbsup a d z d z f wf w 1 w 2 1 zw 4 da w k 1 a z 2 da z ckfk2 bsup a d z f z d k 1 a z 2 1 zw 4 da z da w ckfk2 bsup a d z f k 1 a w 2 1 w 2 2 da w f da w 1 w 2 2 k carleson 2 3 sup a d z d f 3 z 2 1 z 2 2k 1 a z 2 da z f3 qk kf4k b c 15 f4 0 0 kf4k b kf4kb kf2kb 2 1 f 2 z 2 z d f f w 1 w 2 1 zw 3 da w 2 z d 1 1 zw 3 da w 2c 1 z 2 kf2kb sup z d f 2 z 1 z 2 2c distb f qk inf g qk kf gk b kf f3k b kf4k b 2c d2 cd1 d1 1 0 f qk f da z 1 z 2 2 k carleson kf f 1k b 1 1 z 2 f 1 z f z 1 z 2 kf f 1k b f z 1 z 2 1 1 f 1 f da z 1 z 2 2 f 1 z 2da z 1 2 f 1 qk 2 2 f 1 z 2da z k carleson f da z 1 z 2 2 k carleson d4 d2 f da z 1 z 2 2 k carleson sup a d z f k 1 a z 2 1 z 2 2 da z 16 2 3 sup a d z f f z q 1 z 2 q 2k 1 a z 2 da z ckfkq bsup a d z f k 1 a z 2 1 z 2 2 da z 0 k 2t k t d4 d3 d4 d3 d1 z d a z 1 4 g z a log 1 a z 1 z d1 g z a 4 1 a z 2 z d d1 i r f f z q 1 z 2 q 2k g z a da z z f t d1 f z q 1 z 2 q 2k g z a da z z f d1 f z q 1 z 2 q 2k g z a da z i1 i2 17 z d1 1 a z 2 1 2 i1 r f t d1 f z q 1 z 2 q 2k g z a da z c z f f z q 1 z 2 q 2k 1 2 da z c z f f z q 1 z 2 q 2k 1 a z 2 da z k k 2t k t k 2t k t i2 r f f z q 1 z 2 q 2k 4 1 a z 2 da z c z f f z q 1 z 2 q 2k 1 a z 2 da z d4 d3 2 2 2 1 d1 d2 d3 d4 2 2 1 2 3 4 d1 d2 2 1 d1 cd2 f3 b p 2 sup a d z d f 3 z p 1 z 2 p 2k 1 a z 2 da z kf3kp 2 b r d f 3 z 2k 1 a z 2 da z 2 1 f da z 1 z 2 2 k carleson f3 qk p p 2 d1 cd2 d2 cd1 2 1 d2 cd1 f da z 1 z 2 2 f 1 z 2 da z 1 2 18 f da z 1 z 2 2 f 1 z p 1 z 2 p 2da z 1 p 2 4 2 2 2 3 6 82 k d k k1 k k1 c 0 t ck1 t 0 t 0 qk0 bloch b0 bloch qk0 b0 4 2 4 qk0 b0 bloch qk0 b0 2 3 2 2 2 3 19 1 r zhao distances from bloch functions to some m obius invariant spaces ann acad sci fenn math 33 2008 303 313 2 k zhu operator theory in function spaces m dekker new york 1990 3 john b conway functions of one complex variable second edition springer verlag 2004 4 m ess en and h wulan on analytic and meromorphic functions and spaces of qk type illinois j math 46 2002 1233 1258 5 p l duren theory of hpspaces academic press 1970 6 m ess en h wulan and j xiao several function theoretic characterizations of m obuius invariant qkspaces j funct anal 230 2006 78 115 7 m tjani distance of bloch functions to the little bloch space bull austral math soc 74 2006 101 119 8 h wulan and j zhou the higher order derivatives of qktype spaces j math anal appl 332 2007 1216 1228 9 p g ghatage and d zheng analytic functions of bounded mean oscillation and the bloch space int equ operor theory 17 1993 501 515 10 h wulan and j zhou qktype spaces of analytic functions j funct appl 4 2006 73 84 11 h wulan and k zhu derivative free characterizations of qkspaces j austral math soc 82 2007 283 295 12 m ess en and j xiao some results on qpspaces 0 p 1 j reine angew math 485 1997 173 195 13 j r atty a n th derivative characterizations mean growth of derivatives and f p q s bull austral math soc 68 2003 405 421 21 14 r zhao onageneralfamilyoffunctionspaces ann acad sci fenn math diss 105 1996 1 56 15 r aulaskari and p lappan criteria for an analytic function to be bloch and a harmonic or meromorphic function to be normal in complex analysis and its applications pitman res notes math ser 305 longman scientifi c technical harlow 1994 136 146 16 r aulaskari d stegenga and j xiao some subclasses of bmoa and their characterization in terms of carleson measures rocky mountain j math 26 1996 485 506 17 d sarason function theory on the unit circle virginia polytechnic institute and state university blacksburg va june 1978 19 23 18 r aulaskari p lappan criteria for an analytic function to be bloch and a harmonic or meromorphic function to be normal complex analysis and its applications hong kong 1993 pitman res notes math ser longman sci tech harlow 305 1994 136 146 19 r aulaskari j xiao and r zhao on subspaces and subsets of bmoa and ubc analysis 15 1995 101 121 20 k stroethoff on besov type space characterizations for the bloch space bull austral math soc 39 1989 405 420 21 z lou carlesonmeasurecharacterizationofblochfunctions actamath sin englser 12 1996 175 184 22 k stroethoff the bloch space and besov spaces of analytic functions bul

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论