初中数学二次函数综合题含解析.doc_第1页
初中数学二次函数综合题含解析.doc_第2页
初中数学二次函数综合题含解析.doc_第3页
初中数学二次函数综合题含解析.doc_第4页
初中数学二次函数综合题含解析.doc_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学二次函数综合题一选择题(共11小题)1(2013呼和浩特)在同一直角坐标系中,函数y=mx+m和y=mx2+2x+2(m是常数,且m0)的图象可能是()ABCD2(2005浙江)根据下列表格的对应值,判断方程ax2+bx+c=0(a0,a、b、c为常数)一个解的范围是()x3.233.243.253.26ax2+bx+c0.060.020.030.09A3x3.23B3.23x3.24C3.24x3.25D3.25x3.263(2013兰州)二次函数y=2(x1)2+3的图象的顶点坐标是()A(1,3)B(1,3)C(1,3)D(1,3)4(2013兰州)二次函数y=ax2+bx+c(a0)的图象如图所示,则下列说法不正确的是()Ab24ac0Ba0Cc0D5(2014兰州)二次函数y=ax2+bx+c(a0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是()Ac0B2a+b=0Cb24ac0Dab+c06(2008芜湖)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()ABCD7(2014宁夏)已知a0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()ABCD8(2008仙桃)如图,抛物线y=ax2+bx+c(a0)的对称轴是直线x=1,且经过点P(3,0),则ab+c的值为()A0B1C1D29(2015锦州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()ABCD10(2013苏州)已知二次函数y=x23x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x23x+m=0的两实数根是()Ax1=1,x2=1Bx1=1,x2=2Cx1=1,x2=0Dx1=1,x2=311(2007天津)已知二次函数y=ax2+bx+c(a0)的图象如图所示,有下列5个结论:abc0;ba+c;4a+2b+c0;2c3b;a+bm(am+b)(m1的实数)其中正确的结论有()A2个B3个C4个D5个二填空题(共5小题)12(2010金华)已知二次函数y=x2+2x+m的部分图象如图所示,则关于x的一元二次方程x2+2x+m=0的解为13(2013兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是14(2008襄阳)如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是则他将铅球推出的距离是m15(2007成都)如图所示的抛物线是二次函数y=ax23x+a21的图象,那么a的值是16(2010兰州)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米三解答题(共10小题)17(2013枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,3)点,点P是直线BC下方的抛物线上一动点(1)求这个二次函数的表达式(2)连接PO、PC,并把POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积18(2010青岛)某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=10x+500(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价销售量)19(2010西藏)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?20(2007玉溪)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由21(2013营口)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+80设这种产品每天的销售利润为w元(1)求w与x之间的函数关系式(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?22(2014荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?23(2014天水)如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x6)2+h,已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米(1)当h=2.6时,求y与x的函数关系式(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由(3)若球一定能越过球网,又不出边界则h的取值范围是多少?24(2014河池)如图(1),在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a0)与x轴交于A(1,0),B(3,0),与y轴交于C(0,3),顶点为D(1,4),对称轴为DE(1)抛物线的解析式是;(2)如图(2),点P是AD上一个动点,P是P关于DE的对称点,连接PE,过P作PFPE交x轴于F设S四边形EPPF=y,EF=x,求y关于x的函数关系式,并求y的最大值;(3)在(1)中的抛物线上是否存在点Q,使BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在请说明理由25(2014恩施州)某超市经销一种绿茶,每千克成本为60元,经过市场调查发现,在一段时间内,该种绿茶的销售量y(千克)与销售价x(元)满足一次函数关系,其变化与下表所示销售单价x(元)65707580销售量y(千克)1101009080(1)求y与x的函数解析式;(2)当销售单价为多少元时,该绿茶的销售利润最大?(3)如果物价部门规定这种绿茶每千克销售单价不高于95元,若超市计划在这段时间内获得高种绿茶的销售利润为1600元,其销售单价应定为多少?26(2013昆明)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由初中数学二次函数综合题参考答案与试题解析一选择题(共11小题)1(2013呼和浩特)在同一直角坐标系中,函数y=mx+m和y=mx2+2x+2(m是常数,且m0)的图象可能是()ABCD【考点】二次函数的图象;一次函数的图象菁优网版权所有【专题】代数综合题【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a0时,开口向上;当a0时,开口向下对称轴为x=,与y轴的交点坐标为(0,c)【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m0,即函数y=mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m0,对称轴为x=0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m0,即函数y=mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,m0,m0,一次函数图象过一、二、三象限当二次函数开口向上时,m0,m0,对称轴x=0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限故选:D【点评】主要考查了一次函数和二次函数的图象性质以及分析能力和读图能力,要掌握它们的性质才能灵活解题2(2005浙江)根据下列表格的对应值,判断方程ax2+bx+c=0(a0,a、b、c为常数)一个解的范围是()x3.233.243.253.26ax2+bx+c0.060.020.030.09A3x3.23B3.23x3.24C3.24x3.25D3.25x3.26【考点】图象法求一元二次方程的近似根菁优网版权所有【分析】根据函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,再根据函数的增减性即可判断方程ax2+bx+c=0一个解的范围【解答】解:函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;由表中数据可知:y=0在y=0.02与y=0.03之间,对应的x的值在3.24与3.25之间,即3.24x3.25故选:C【点评】掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关键所在3(2013兰州)二次函数y=2(x1)2+3的图象的顶点坐标是()A(1,3)B(1,3)C(1,3)D(1,3)【考点】二次函数的性质菁优网版权所有【分析】直接根据抛物线的顶点式的特点即可确定顶点坐标【解答】解:y=2(x1)2+3,其顶点坐标是(1,3)故选:A【点评】主要考查了求抛物线的顶点坐标的方法4(2013兰州)二次函数y=ax2+bx+c(a0)的图象如图所示,则下列说法不正确的是()Ab24ac0Ba0Cc0D【考点】二次函数图象与系数的关系菁优网版权所有【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【解答】解:A、正确,抛物线与x轴有两个交点,=b24ac0;B、正确,抛物线开口向上,a0;C、正确,抛物线与y轴的交点在y轴的正半轴,c0;D、错误,抛物线的对称轴在x的正半轴上,0故选:D【点评】主要考查二次函数图象与系数之间的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用5(2014兰州)二次函数y=ax2+bx+c(a0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是()Ac0B2a+b=0Cb24ac0Dab+c0【考点】二次函数图象与系数的关系菁优网版权所有【专题】数形结合【分析】本题考查二次函数图象的相关知识与函数系数的联系需要根据图形,逐一判断【解答】解:A、因为二次函数的图象与y轴的交点在y轴的上方,所以c0,正确;B、由已知抛物线对称轴是直线x=1,得2a+b=0,正确;C、由图知二次函数图象与x轴有两个交点,故有b24ac0,正确;D、直线x=1与抛物线交于x轴的下方,即当x=1时,y0,即y=ax2+bx+c=ab+c0,错误故选:D【点评】在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法同时注意特殊点的运用6(2008芜湖)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()ABCD【考点】二次函数的图象;一次函数的图象菁优网版权所有【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除【解答】解:当a0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=0,且a0,则b0,但B中,一次函数a0,b0,排除B故选:C【点评】应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等7(2014宁夏)已知a0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()ABCD【考点】二次函数的图象;正比例函数的图象菁优网版权所有【专题】数形结合【分析】本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较)【解答】解:A、函数y=ax中,a0,y=ax2中,a0,但当x=1时,两函数图象有交点(1,a),故A错误;B、函数y=ax中,a0,y=ax2中,a0,故B错误;C、函数y=ax中,a0,y=ax2中,a0,但当x=1时,两函数图象有交点(1,a),故C正确;D、函数y=ax中,a0,y=ax2中,a0,故D错误故选:C【点评】函数中数形结合思想就是:由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状8(2008仙桃)如图,抛物线y=ax2+bx+c(a0)的对称轴是直线x=1,且经过点P(3,0),则ab+c的值为()A0B1C1D2【考点】二次函数的图象菁优网版权所有【专题】压轴题【分析】由“对称轴是直线x=1,且经过点P(3,0)”可知抛物线与x轴的另一个交点是(1,0),代入抛物线方程即可解得【解答】解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(1,0)代入抛物线解析式y=ax2+bx+c中,得ab+c=0故选A【点评】巧妙利用了抛物线的对称性9(2015锦州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()ABCD【考点】二次函数的图象;一次函数的图象菁优网版权所有【分析】根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,2),二次函数的开口向上,据此判断二次函数的图象【解答】解:当a0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限故选C【点评】此题主要考查了二次函数及一次函数的图象的性质,用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标10(2013苏州)已知二次函数y=x23x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x23x+m=0的两实数根是()Ax1=1,x2=1Bx1=1,x2=2Cx1=1,x2=0Dx1=1,x2=3【考点】抛物线与x轴的交点菁优网版权所有【分析】关于x的一元二次方程x23x+m=0的两实数根就是二次函数y=x23x+m(m为常数)的图象与x轴的两个交点的横坐标【解答】解:二次函数的解析式是y=x23x+m(m为常数),该抛物线的对称轴是:x=又二次函数y=x23x+m(m为常数)的图象与x轴的一个交点为(1,0),根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),关于x的一元二次方程x23x+m=0的两实数根分别是:x1=1,x2=2故选B【点评】本题考查了抛物线与x轴的交点解答该题时,也可以利用代入法求得m的值,然后来求关于x的一元二次方程x23x+m=0的两实数根11(2007天津)已知二次函数y=ax2+bx+c(a0)的图象如图所示,有下列5个结论:abc0;ba+c;4a+2b+c0;2c3b;a+bm(am+b)(m1的实数)其中正确的结论有()A2个B3个C4个D5个【考点】二次函数图象与系数的关系菁优网版权所有【专题】压轴题;数形结合【分析】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0;当x=1时图象在x轴下方得到y=ab+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c0;利用对称轴x=1得到a=b,而ab+c0,则bb+c0,所以2c3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+cam2+bm+c,即a+bm(am+b)(m1)【解答】解:开口向下,a0;对称轴在y轴的右侧,a、b异号,则b0;抛物线与y轴的交点在x轴的上方,c0,则abc0,所以不正确;当x=1时图象在x轴下方,则y=ab+c=0,即a+c=b,所以不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c0,所以正确;x=1,则a=b,而ab+c=0,则bb+c=0,2c=3b,所以不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m1)时,y=am2+bm+c,则a+b+cam2+bm+c,即a+bm(am+b)(m1),所以正确故选:A【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0)的图象,当a0,开口向上,函数有最小值,a0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c0,抛物线与y轴的交点在x轴的上方;当=b24ac0,抛物线与x轴有两个交点二填空题(共5小题)12(2010金华)已知二次函数y=x2+2x+m的部分图象如图所示,则关于x的一元二次方程x2+2x+m=0的解为1或3【考点】抛物线与x轴的交点菁优网版权所有【分析】由二次函数y=x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程x2+2x+m=0的解【解答】解:依题意得二次函数y=x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),抛物线与x轴的另一个交点横坐标为1(31)=1,交点坐标为(1,0)当x=1或x=3时,函数值y=0,即x2+2x+m=0,关于x的一元二次方程x2+2x+m=0的解为x1=1或x2=3故答案为:x1=1或x2=3【点评】此题主要考查了学生的数形结合思想,二次函数的对称性,以及二次函数与x轴交点横坐标与相应一元二次方程的根关系13(2013兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是2k【考点】二次函数的性质菁优网版权所有【专题】压轴题【分析】根据AOB=45求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的k值,即为一个交点时的最大值,再求出抛物线经过点B时的k的值,即为一个交点时的最小值,然后写出k的取值范围即可【解答】解:由图可知,AOB=45,直线OA的解析式为y=x,联立消掉y得,x22x+2k=0,=b24ac=(2)2412k=0,即k=时,抛物线与OA有一个交点,此交点的横坐标为1,点B的坐标为(2,0),OA=2,点A的坐标为(,),交点在线段AO上;当抛物线经过点B(2,0)时,4+k=0,解得k=2,要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是2k故答案为:2k【点评】本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键14(2008襄阳)如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是则他将铅球推出的距离是10m【考点】二次函数的应用菁优网版权所有【分析】成绩就是当高度y=0时x的值,所以解方程可求解【解答】解:当y=0时,x2+x+=0,解之得x1=10,x2=2(不合题意,舍去),所以推铅球的距离是10米【点评】此题把函数问题转化为方程问题来解,渗透了函数与方程相结合的解题思想方法15(2007成都)如图所示的抛物线是二次函数y=ax23x+a21的图象,那么a的值是1【考点】二次函数的图象菁优网版权所有【分析】由图象可知,抛物线经过原点(0,0),二次函数y=ax23x+a21与y轴交点纵坐标为a21,所以a21=0,解得a的值再图象开口向下,a0确定a的值【解答】解:由图象可知,抛物线经过原点(0,0),所以a21=0,解得a=1,图象开口向下,a0,a=1【点评】主要考查了从图象上把握有用的条件,准确选择数量关系解得a的值,简单的图象最少能反映出2个条件:开口向下a0;经过原点a21=0,利用这两个条件即可求出a的值16(2010兰州)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为0.5米【考点】二次函数的应用菁优网版权所有【专题】压轴题【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答【解答】解:以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A、B、C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解之得a=2,b=4,c=2.5y=2x24x+2.5=2(x1)2+0.520当x=1时,y=0.5米故答案为:0.5米【点评】本题考查点的坐标的求法及二次函数的实际应用此题为数学建模题,借助二次函数解决实际问题三解答题(共10小题)17(2013枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,3)点,点P是直线BC下方的抛物线上一动点(1)求这个二次函数的表达式(2)连接PO、PC,并把POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积【考点】二次函数综合题菁优网版权所有【专题】压轴题【分析】(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;(2)由于菱形的对角线互相垂直平分,若四边形POPC为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;(3)由于ABC的面积为定值,当四边形ABPC的面积最大时,BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标【解答】解:(1)将B、C两点的坐标代入得,解得:;所以二次函数的表达式为:y=x22x3(2)存在点P,使四边形POPC为菱形;设P点坐标为(x,x22x3),PP交CO于E若四边形POPC是菱形,则有PC=PO;连接PP,则PECO于E,C(0,3),CO=3,又OE=EC,OE=EC=y=;x22x3=解得x1=,x2=(不合题意,舍去),P点的坐标为(,)(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x22x3),设直线BC的解析式为:y=kx+d,则,解得:直线BC的解析式为y=x3,则Q点的坐标为(x,x3);当0=x22x3,解得:x1=1,x2=3,AO=1,AB=4,S四边形ABPC=SABC+SBPQ+SCPQ=ABOC+QPBF+QPOF=当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为【点评】此题考查了二次函数解析式的确定、菱形的判定和性质以及图形面积的求法等知识,当所求图形不规则时通常要将其转换为其他规则图形面积的和差关系来求解18(2010青岛)某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=10x+500(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价销售量)【考点】二次函数的应用菁优网版权所有【专题】应用题【分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价进价)销售量,从而列出关系式;(2)令w=2000,然后解一元二次方程,从而求出销售单价;(3)根据抛物线的性质和图象,求出每月的成本【解答】解:(1)由题意,得:w=(x20)y,=(x20)(10x+500)=10x2+700x10000,答:当销售单价定为35元时,每月可获得最大利润(2)由题意,得:10x2+700x10000=2000,解这个方程得:x1=30,x2=40,答:李明想要每月获得2000元的利润,销售单价应定为30元或40元(3)a=100,抛物线开口向下,当30x40时,w2000,x32,当30x32时,w2000,设成本为P(元),由题意,得:P=20(10x+500)=200x+10000,a=2000,P随x的增大而减小,当x=32时,P最小=3600,答:想要每月获得的利润不低于2000元,每月的成本最少为3600元【点评】此题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题19(2010西藏)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【考点】二次函数的应用菁优网版权所有【分析】(1)根据题意易求y与x之间的函数表达式(2)已知函数解析式,设y=4800可从实际得x的值(3)利用x=求出x的值,然后可求出y的最大值【解答】解:(1)根据题意,得y=(24002000x)(8+4),即y=x2+24x+3200;(2)由题意,得x2+24x+3200=4800整理,得x2300x+20000=0解这个方程,得x1=100,x2=200要使百姓得到实惠,取x=200元每台冰箱应降价200元;(3)对于y=x2+24x+3200=(x150)2+5000,当x=150时,y最大值=5000(元)所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法借助二次函数解决实际问题20(2007玉溪)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由【考点】二次函数综合题菁优网版权所有【专题】压轴题【分析】(1)因为直线y=x+m过点A,将A点坐标直接代入解析式即可求得m的值;设出二次函数的顶点式,将(3,4)代入即可;(2)由于P和E的横坐标相同,将P点横坐标代入直线和抛物线解析式,可得其纵坐标表达式,h即为二者之差;根据P、E在二者之间,所以可知x的取值范围是0x3;(3)先假设存在点P,根据四边形DCEP是平行四形的条件进行推理,若能求出P点坐标,则证明存在点P,否则P点不存在【解答】解:(1)点A(3,4)在直线y=x+m上,4=3+mm=1设所求二次函数的关系式为y=a(x1)2点A(3,4)在二次函数y=a(x1)2的图象上,4=a(31)2,a=1所求二次函数的关系式为y=(x1)2即y=x22x+1(2)设P、E两点的纵坐标分别为yP和yEPE=h=yPyE=(x+1)(x22x+1)=x2+3x即h=x2+3x(0x3)(3)存在解法1:要使四边形DCEP是平行四边形,必需有PE=DC点D在直线y=x+1上,点D的坐标为(1,2),x2+3x=2即x23x+2=0解之,得x1=2,x2=1(不合题意,舍去)当P点的坐标为(2,3)时,四边形DCEP是平行四边形解法2:要使四边形DCEP是平行四边形,必需有BPCE设直线CE的函数关系式为y=x+b直线CE经过点C(1,0),0=1+b,b=1直线CE的函数关系式为y=x1得x23x+2=0解之,得x1=2,x2=1(不合题意,舍去)当P点的坐标为(2,3)时,四边形DCEP是平行四边形【点评】此题考查了用待定系数法求函数解析式以及函数图象上点的坐标特征,结合图形有利于解答;(3)是一道存在性问题,有一定的开放性,需要先假设点P存在,然后进行验证计算21(2013营口)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+80设这种产品每天的销售利润为w元(1)求w与x之间的函数关系式(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【考点】二次函数的应用菁优网版权所有【专题】压轴题【分析】(1)根据销售额=销售量销售单价,列出函数关系式;(2)用配方法将(1)的函数关系式变形,利用二次函数的性质求最大值;(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值【解答】解:(1)由题意得出:w=(x20)y=(x20)(2x+80)=2x2+120x1600,故w与x的函数关系式为:w=2x2+120x1600;(2)w=2x2+120x1600=2(x30)2+200,20,当x=30时,w有最大值w最大值为200答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元(3)当w=150时,可得方程2(x30)2+200=150解得 x1=25,x2=35 3528,x2=35不符合题意,应舍去 答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元【点评】本题考查了二次函数的运用关键是根据题意列出函数关系式,运用二次函数的性质解决问题22(2014荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?【考点】二次函数的应用菁优网版权所有【专题】销售问题【分析】(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;【解答】解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50,化简得:y=5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300x350y与x之间的函数关系式为:y=5x+2200(300x350);(2)W=(x200)(5x+2200),整理得:W=5(x320)2+72000x=320在300x350内,当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元【点评】本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识23(2014天水)如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x6)2+h,已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米(1)当h=2.6时,求y与x的函数关系式(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由(3)若球一定能越过球网,又不出边界则h的取值范围是多少?【考点】二次函数的应用菁优网版权所有【专题】代数综合题;待定系数法【分析】(1)利用h=2.6,球从O点正上方2m的A处发出,将点(0,2)代入解析式求出即可;(2)利用当x=9时,y=(x6)2+2.6=2.45,当y=0时,(x6)2+2.6=0,分别得出即可;(3)根据当球正好过点(18,0)时,抛物线y=a(x6)2+h还过点(0,2),以及当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x6)2+h还过点(0,2)时分别得出h的取值范围,即可得出答案【解答】解:(1)h=2.6,球从O点正上方2m的A处发出,抛物线y=a(x6)2+h过点(0,2),2=a(06)2+2.6,解得:a=,故y与x的关系式为:y=(x6)2+2.6,(2)当x=9时,y=(x6)2+2.6=2.452.43,所以球能过球网;当y=0时,(x6)2+2.6=0,解得:x1=6+18,x2=6(舍去)故会出界;(3)当球正好过点(18,0)时,抛物线y=a(x6)2+h还过点(0,2),代入解析式得:,解得,此时二次函数解析式为:y=(x6)2+,此时球若不出边界h,当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x6)2+h还过点(0,2),代入解析式得:,解得,此时球要过网h,故若球一定能越过球网,又不出边界,h的取值范围是:h【点评】此题主要考查了二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,再根据题意确定范围24(2014河池)如图(1),在平面直角坐标系xOy中,抛物线y=ax2+bx+c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论