




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
动专1、已知:如图,在中,点由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀速运动,速度为2cm/s;连接若设运动的时间为(),解答下列问题:(1)当为何值时,?(2)设的面积为(),求与之间的函数关系式;(3)是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;AQCPB图AQCPB图(4)如图,连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由动专3、中,cm长为1cm的线段在的边上沿方向以1cm/s的速度向点运动(运动前点与点重合)过分别作的垂线交直角边于两点,线段运动的时间为s(1)若的面积为,写出与的函数关系式(写出自变量的取值范围);(2)线段运动过程中,四边形有可能成为矩形吗?若有可能,求出此时的值;若不可能,说明理由;(3)为何值时,以为顶点的三角形与相似?动专4 如图,在边长为4的正方形中,点在上从向运动,连接交于点(1)试证明:无论点运动到上何处时,都有;(2)当点在上运动到什么位置时,的面积是正方形面积的;(3)若点从点运动到点,再继续在上运动到点,在整个运动过程中,当点 运动到什么位置时,恰为等腰三角形动专5 如图,在平面直角坐标系中,点,点分别在轴,轴的正半轴上,且满足(1)求点,点的坐标(2)若点从点出发,以每秒1个单位的速度沿射线运动,连结设的面积为,点的运动时间为秒,求与的函数关系式,并写出自变量的取值范围(3)在(2)的条件下,是否存在点,使以点为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由动专6 已知:如图,抛物线与轴交于点,点,与直线相交于点,点,直线与轴交于点(1)写出直线的解析式(2)求的面积(3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从向运动设运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?动专7 已知:如图,在直角梯形中,以为原点建立平面直角坐标系,三点的坐标分别为,点为线段的中点,动点从点出发,以每秒1个单位的速度,沿折线的路线移动,移动的时间为秒(1)求直线的解析式;(2)若动点在线段上移动,当为何值时,四边形的面积是梯形面积的?ABDCOPxy(3)动点从点出发,沿折线的路线移动过程中,设的面积为,请直接写出与的函数关系式,并指出自变量的取值范围;ABDCOxy(备用图)ABDCOxy(备用图)动专8 如图,直角梯形中,,为坐标原点,点在轴正半轴上,点在轴正半轴上,点坐标为(2,2),= 60,于点.动点从点出发,沿线段向点运动,动点从点出发,沿线段向点运动,两点同时出发,速度都为每秒1个单位长度.设点运动的时间为秒.(1) 求的长;(2) 若的面积为(平方单位). 求与之间的函数关系式.并求为何值时, 的面积最大,最大值是多少?(3) 设与交于点.当为等腰三角形时,求(2)中的值. 探究线段长度的最大值是多少,直接写出结论.备用图2备用图1动专9如图1,是一张放在平面直角坐标系中的矩形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,(1)在边上取一点,将纸片沿翻折,使点落在边上的点处,求两点的坐标;(2)如2,若上有一动点(不与重合)自点沿方向向点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒(),过点作的平行线交于点,过点作的平行线交于点求四边形的面积与时间之间的函数关系式;当取何值时,有最大值?最大值是多少?(3)在(2)的条件下,当为何值时,以为顶点的三角形为等腰三角形,并求出相应的时刻点的坐标yxBCOADE图1yxBCOADE图2PMN动专10 如图,平行四边形ABCD中,AB5,BC10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合)过E作直线AB的垂线,垂足为F FE与DC的延长线相交于点G,连结DE,DF(1) 求证:BEF CEG(2) 当点E在线段BC上运动时,BEF和CEG的周长之间有什么关系?并说明你的理由(3)设BEx,DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少? 动专11 如图甲,在ABC中,ACB为锐角点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF解答下列问题:(1)如果AB=AC,BAC=90当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 当点D在线段BC的延长线上时,如图丙,中的结论是否仍然成立,为什么?图甲图乙图丙 (2)如果ABAC,BAC90,点D在线段BC上运动试探究:当ABC满足一个什么条件时,CFBC(点C、F重合除外)?画出相应图形,并说明理由(画图不写作法) ABDCE图1动专12在中,点在所在的直线上运动,作(按逆时针方向)(1)如图1,若点在线段上运动,交于求证:;当是等腰三角形时,求的长(2)如图2,若点在的延长线上运动,的反向延长线与的延长线相交于点,是否存在点,使是等腰三角形?若存在,写出所有点的位置;若不存在,请简要说明理由;如图3,若点在的反向延长线上运动,是否存在点,使是等腰三角形?若存在,写出所有点的位置;若不存在,请简要说明理由CDBAECABDE图2图325. (本题满分12分)已知如图,矩形OABC的长OA=,宽OC=1,将AOC沿AC翻折得APC.(1)求PCB的度数;(2)若P,A两点在抛物线y=x2+bx+c上,求b,c的值,并说明点C在此抛物线上;(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.20(本题14分)在平面直角坐标系Oy中,已知抛物线y =与轴交于A、B两点(点A在点B的左侧),与y轴交于点C ,其顶点为M,若直线MC的函数表达式为,与轴的交点为N ,且COSBCO (1)求此抛物线的函数表达式; (2)在此抛物线上是否存在异于点C的点P ,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由; (3)过点A作轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?22(本小题满分5分)定义为一次函数的特征数(1)若特征数是的一次函数为正比例函数,求的值;(2)设点分别为抛物线与轴、轴的交点,其中,且的面积为4,为坐标原点,求图象过、两点的一次函数的特征数25.(本题满分8分)如图,菱形OABC的顶点O在坐标原点,顶点B在x轴的正半轴上,OA边在直线上,AB边在直线上。(1)直接写出O、A、B、C的坐标;(2)在OB上有一动点P,以O为圆心,OP为半径画弧,分别交边OA、OC于 M、N(M、N可以与A、C重合),作Q与边AB、BC,弧都相切,Q分别与边AB、BC相切于点D、E,设Q的半径为r,OP的长为y,求y与r之间的函数关系式,并写出自变量r的取值范围;(3)以O为圆心、OA为半径做扇形OAC,请问在菱形OABC中,除去扇形OAC后剩余部分内,是否可以截下一个圆,使得它与扇形OAC刚好围成一个圆锥. 若可以,求出这个圆的面积,若不可以,说明理由。25.(1)PCB=30 3分 (2) 6分点C(0,1)满足上述函数关系式,所以点C在抛物线上. 7分(3)、若DE是平行四边形的对角线,点C在y轴上,CD平行x轴,过点D作DMCE交x轴于M,则四边形EMDC为平行四边形,把y=1代入抛物线解析式得点D的坐标为(,1)把y=0代入抛物线解析式得点E的坐标为(,0)M(,0);N点即为C点,坐标是(0,1); 9分、若DE是平行四边形的边,则DE=2,DEF=30,过点A作ANDE交y轴于N,四边形DANE是平行四边形,M(,0),N(0,-1); 11分同理过点C作CMDE交y轴于N,四边形CMDE是平行四边形,M(,0),N(0, 1). 12分22解:(1)特征数为的一次函数为,1分(2)抛物线与轴的交点为,与轴的交点为若,则,(舍);若,则,综上,抛物线为,它与轴的交点为,与轴的交点为,所求一次函数为或,特征数为或5分25.解:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妇产科护理学机考题库及答案解析
- 玻璃钢制品工特殊工艺考核试卷及答案
- 梳理缝编非织造布制作工工艺考核试卷及答案
- 2025河池事业单位面试题目及答案
- 汽车整车装调工特殊工艺考核试卷及答案
- 三聚氰胺装置操作工成本预算考核试卷及答案
- 2025房屋租赁合同汇编
- 化学制浆工效率提升考核试卷及答案
- 2025正式的南京市劳动合同模板
- 太理实验室安全试题库及答案解析
- 中医特禀体质讲解
- 危险化学品装卸管理课件
- 减肥与能量代谢课件
- 世赛基地管理办法
- 2024荆州理工职业学院辅导员招聘笔试真题
- (高清版)DB11∕T 2453-2025 大型活动医疗保障通 用要求
- 气管插管病人的护理及注意事项讲课件
- CJ/T 316-2009城镇供水服务
- 代持股合同范本8篇
- 机场安检员笔试题及答案
- 法院赔偿申请书
评论
0/150
提交评论