


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教案课 题11.1.2 三角形的高、中线与角平分线课时及授课时间 1 课时 授课人 月 日教学目标 (学习目标)知识与技能1、经历画图的过程,认识三角形的高、中线与角平分线;2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点. 过程与方法在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯情感、态度与价值观体会数学与现实生活的联系,增强克服困难的勇气和信心教学重点三角形的高、中线与角平分线教学难点画钝角三角形的高教学用具多媒体 三角板教学方法 (学习方法)合作互助式教学过程一、导入新课 我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。 二、三角形的高请你在图中画出ABC的一条高并说说你画法。 从ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做ABC的边BC上的高,表示为ADBC于点D。注意:高与垂线不同,高是线段,垂线是直线。请你再画出这个三角形AB 、AC边上的高,看看有什么发现?三角形的三条高相交于一点。如果ABC是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答, 上面的结论还成立。三、三角形的中线如图,我们把连结ABC的顶点A和它的对边BC的中点D,所得线段AD叫做ABC的边BC上的中线,表示为BD=DC或BD=DC1/2BC或2BD=2DC=BC.请你在图中画出ABC的另两条边上的中线,看看有什么发现?三角的三条中线相交于一点。如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答,上面的结论还成立。ABCODEF四、三角形的角平分线如图,画A的平分线AD,交A所对的边BC于点D,所得线段AD叫做ABC的角平分线,表示为BAD=CAD或BAD=CAD1/2BAC或2BAD=2CADBAC。思考:三角形的角平分线与角的平分线是一样的吗?三角形的角平分线是线段,而角的平分线是射线,是不一样的。请你在图中再画出另两个角的平分线,看看有什么发现? 三角形三个角的平分线相交于一点。如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。上面的结论还成立。想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。五、课堂练习 课本5頁练习1、2题。六、课堂小结1、三角形的高、中线、角平分线的概念和画法。2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。七、作业:课本8頁3、4;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环境压力对微生物种群多样性的影响-洞察阐释
- 2024年宜昌市事业单位专项招聘真题
- 2024年湄潭县城镇公益性岗位招聘真题
- 2024年贵州事业单位招聘真题
- 贵阳市农村义务教育阶段学校教师特设岗位招聘笔试真题2024
- 集体备课教学设计表
- 智慧安全+城市应急-洞察阐释
- 整车制造企业经营管理方案
- 民营企业产业升级的机遇与瓶颈
- 数据驱动的战略决策闭环-数字化经营分析会
- 2025年煤矿井下作业安全员理论全国考试题库(含答案)
- 交通运输行业服务质量标准制度
- 2024年广东省深圳市南山区学府中学中考英语四模试卷
- 停医保申请书5篇
- DB11T 408-2016 医院洁净手术部污染控制规范
- 小学一年级数学思维训练100题(附答案)
- 七年级篮球教案
- 个人债务结清协议书模板
- 招投标管理招聘笔试题与参考答案
- 2023年全国职业院校技能大赛-融媒体内容策划与制作赛项规程
- 无犯罪查询授权委托书
评论
0/150
提交评论