



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.2 二项式系数的性质A组基础巩固1已知C2C22CC2nC729,则CCC的值等于()A64 B32 C63 D31解析:由已知得3n729,n6,CCCCCC32.答案:B2(1x)2n1的展开式中,二项式系数最大的项所在的项数是()An,n1 Bn1,nCn1,n2 Dn2,n3解析:(1x)2n1的展开式有2n2项系数最大的项是中间两项,是第n1项与第n2项,它们的二项式系数为C与C.答案:C3(x21)(x2)9a0a1(x1)a2(x1)2a3(x1)3a11(x1)11,则a1a2a3a11的值为()A0 B2C255 D2解析:令x1,得2(1)a0,令x2,得(221)0a0a1a2a3a11,两式联立得:a1a2a3a112.答案:B41.056的计算结果精确到0.01的近似值是()A1.23 B1.24C1.33 D1.34解析:1.056(10.05)6CC0.05C0.052C0.05310.30.037 50.002 51.34.答案:D5在4的展开式中各项系数之和是16.则a的值是()A2 B3C4 D1或3解析:由题意可得(a1)416,a12,解得a1或a3.答案:D6设(5x)n的展开式的各项系数之和为M,二项式系数之和为N,若MN240,则展开式中x的系数为_解析:由题意知,M4n,N2n,由MN240,可解得n4,所以展开式中x的系数为C52(1)2150.答案:1507如图所示,在由二项式系数所构成的杨辉三角中,第_行中从左至右第14个数与第15个数的比为23.第0行 1第1行 11第2行121第3行 1331第4行 14641第5行 15101051 解析:由题意设第n行的第14个数与第15个数的比为23,等于二项展开式的第14项和第15项的系数比,所以CC23,即,解得n34.所以在第34行中,从左至右第14个数与第15个数的比为23.答案:348若(x21)(2x1)9a0a1(x2)a2(x2)2a11(x2)11,则a0a1a2a11的值为_解析:令x1,则原式可化为(1)212(1)192a0a1(21)a11(21)11,a0a1a2a112.答案:29写出(xy)11的展开式中:(1)通项Tr1;(2)二项式系数最大的项;(3)系数绝对值最大的项;(4)系数最大的项;(5)系数最小的项;(6)二项式系数的和;(7)各项的系数和解析:(1)Tr1Cx11r(y)r(1)rCx11ryr.(2)二项式系数最大的项为中间两项:T6(1)5Cx6y5462x6y5,T7(1)6Cx5y6462x5y6.(3)系数绝对值最大的项也是中间两项,故为T6462x6y5,T7462x5y6.(4)中间两项系数绝对值相等,一正一负,第7项系数为正,故取T7462x5y6.(5)系数最小的项是T6462x6y5.(6)二项式系数的和为211.(7)各项的系数和为CCCC(11)110.10在(3x2y)20的展开式中,求:(1)二项式系数最大的项;(2)系数绝对值最大的项;(3)系数最大的项解析:(1)二项式系数最大的项是第11项T11C310(2)10x10y10C610x10y10.(2)设系数绝对值最大的项是第r1项,于是化简得解之得7r8.因为rN*,所以r8,即T9C31228x12y8是系数绝对值最大的项(3)由于系数为正的项为奇数项,故可设第2r1项系数最大(rN*),于是化简得解之得r5,即第2519项系数最大T9C31228x12y8.B组能力提升1若(x2m)9a0a1(x1)a2(x1)2a9(x1)9,且(a0a2a8)2(a1a3a9)239,则实数m的值为()A1或3 B1或3C1 D3解析:令x0,得到a0a1a2a9(2m)9,令x2,得到a0a1a2a3a9m9,所以有(2m)9m939,即m22m3,解得m1或3.答案:A2设m为正整数,(xy)2m展开式的二项式系数的最大值为a,(xy)2m1展开式的二项式系数的最大值为b.若13a7b,则m()A5 B6C7 D8解析:(xy)2m展开式中二项式系数的最大值为C,所以aC.同理,bC.因为13a7b,所以13C7C,所以137,所以m6.答案:B 3若(2x3)5a0a1xa2x2a3x3a4x4a5x5,则a12a23a34a45a5等于_解析:设f(x)a0a1xa2x2a3x3a4x4a5x5,因为f(x)a12a2x3a3x24a4x35a5x4,所以f(1)a12a23a34a45a5,又因为f(x)(2x3)5,所以f(x)10(2x3)4,所以f(1)10,即a12a23a34a45a510.答案:104若(x1)(x1)2(x1)na0a1(x1)a2(x1)2an(x1)n,则a0a1an_.解析:当x2时,等式右边为a0a1an,等式左边为3323n(3n1)所以a0a1an(3n1)答案:(3n1)5在()8的展开式中,(1)系数的绝对值最大的项是第几项?(2)求二项式系数最大的项;(3)求系数最大的项;(4)求系数最小的项解析:Tr1C()8r()r(1)rC2rx4.(1)设第r1项系数的绝对值最大则5r6,故系数绝对值最大的项是第6项和第7项(2)二项式系数最大的项为中间项,即为第5项T5C24x41 120x6.(3)由(1)知,展开式中的第6项和第7项系数的绝对值最大,而第6项的系数为负,第7项的系数为正则系数最大的项为T7C26x111 792x11.(4)系数最小的项为T6C25x1 792x.6若非零实数m、n满足2mn0,且在二项式(axmbxn)12(a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咨询直播方案怎么写好
- 江门企业拓展活动方案策划
- 保险咨询方案收费原因
- 还款咨询方案怎么写
- 节日活动策划方案案例分析
- 脑部障碍康复咨询方案
- 苏州职业危机咨询方案
- 朔州液压顶管施工方案
- 幼儿园舞蹈排练比赛合同范文8篇
- 施工现场设备管理措施专项施工方案
- 2025-2030中国术中神经生理监测行业市场发展趋势与前景展望战略研究报告
- 2024慢性鼻窦炎诊断和治疗指南解读课件
- 《YS-T621-2021百叶窗用铝合金带、箔材》
- 《胸痛中心质控指标及考核标准》(第三版修订版)
- 2025年国资委企业面试题及答案
- 食品安全周课件
- 亚朵酒店前台培训
- QC七大手法培训
- 拆迁补偿安置协议
- 企业财务分析实践指南
- 体格检查(心肺)
评论
0/150
提交评论