




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省棠湖中学高2019届高考适应性考试文科数学一选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D. 【答案】C【解析】【分析】算出集合后可求.【详解】,故,故选C.【点睛】本题考查集合的交,属于基础题,解题时注意对数不等式的等价转化.2.若复数在复平面内所对应的点在实轴上,则实数( )A. 2B. -2C. 1D. 0【答案】B【解析】【分析】算出后利用对应的点在实轴上可求.【详解】,因复平面内所对应的点在实轴上,所以为实数,故,故选B.【点睛】本题考查复数的四则运算和复数的几何意义,属于基础题.3.已知直线和平面,且,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由线面垂直的判定定理可得充分性成立;由或可得必要性不成立,从而可得结论.【详解】由线面垂直的判定定理可得,若,则,充分性成立;若,则或,必要性不成立,所以若,则“”是“”的充分不必要条件,故选A.【点睛】本题通过线面垂直的判断主要考查充分条件与必要条件,属于中档题.判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题的等价性判断;对于范围问题也可以转化为包含关系来处理.4.函数的最小正周期为( )A. B. C. D. 2【答案】D【解析】【分析】利用函数的最小正周期为得出结论.【详解】函数是小正周期为,故选D.【点睛】本题主要考查正切函数的周期性,属于基础题. 函数的周期为.5.设直线与直线的交点为;分别为上任意两点,点为的中点,若,则的值为( )A. B. C. D. 【答案】A【解析】根据题意画出图形,如图所示; 直线 与直线 的交点为 ; 为 的中点,若,则 即 解得 故选A6.在中,且,则( )A. B. C. D. 【答案】A【解析】【分析】在中,由正弦定理得,又,所以,再利用余弦定理,即可求解,得到答案。【详解】在中,因为,由正弦定理知,又,所以,又由余弦定理知:,解得,即,故选A。【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键在中,通常涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.7.甲、乙两个几何体的三视图如图所示(单位相同),记甲、乙两个几何体的体积分别为,则( )A. B. C. D. 【答案】D【解析】由甲的三视图可知,该几何体为一个正方体中间挖掉一个长方体,正方体的棱长为8,长方体的长为4,宽为4,高为6,则该几何体的体积为;由乙的三视图可知,该几何体为一个底面为正方形,边长为9,高为9的四棱锥,则该几何体的体积为.故选D.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题. 三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.8.已知双曲线的中心在原点,焦点在坐标轴上,一条渐近线方程为,则该双曲线的离心率是( )A. B. C. 或D. 或【答案】D【解析】【分析】把渐近线方程化为斜截式方程,根据焦点的位置不同,分类求出双曲线的离心率.【详解】,当焦点位于横轴时,而,所以当焦点位于纵轴时,故本题选D.【点睛】本题考查了通过双曲线的渐近线方程求离心率问题,解题的关键是对焦点的位置进行分类.9.若函数为常数,)的图象关于直线对称,则函数的图象()A. 关于直线对称B. 关于直线对称C. 关于点对称D. 关于点对称【答案】D【解析】【分析】利用三角函数的对称性求得a的值,可得g(x)的解析式,再代入选项,利用正弦函数的图象的对称性,得出结论【详解】解:函数f(x)asinx+cosx(a为常数,xR)的图象关于直线x对称,f(0)f(),即,a,所以函数g(x)sinx+acosxsinx+cosxsin(x+),当x时,g(x)-,不是最值,故g(x)的图象不关于直线x对称,故A错误,当x时,g(x)1,不是最值,故g(x)的图象不关于直线x对称,故B错误,当x时,g(x)0,故C错误,当x时,g(x)0,故D正确,故选:D【点睛】本题考查三角恒等变形以及正弦类函数的对称性,是三角函数中综合性比较强的题目,比较全面地考查了三角函数的图象与性质,属于中档题10.三棱锥中,底面,若,则该三棱锥外接球的表面积为()A. B. C. D. 【答案】C【解析】【分析】先利用正弦定理计算出ABC的外接圆直径2r,再结合三棱锥的特点,得出球心的位置:过ABC外接圆圆心的垂线与线段SA中垂面的交点.再利用公式可计算出该三棱锥的外接球直径,最后利用球体表面积公式可得出答案【详解】解:由于ABBCAC3,则ABC是边长为3的等边三角形,由正弦定理知,ABC的外接圆直径为,由于SA底面ABC,所以,ABC外接圆圆心的垂线与线段SA中垂面的交点为该三棱锥的外接球的球心,所以外接球的半径,因此,三棱锥SABC的外接球的表面积为4R2421故选:C【点睛】本题考查球体表面积的计算,解决本题的关键在于找出球心的位置,考查计算能力,属于中等题11.过抛物线:的焦点的直线交抛物线于,两点,且,则原点到的距离为( )A. B. C. D. 【答案】C【解析】由抛物线的焦点, 设直线的方程为,由 ,则,所以,根据抛物线定义可知,解得,当时,直线的方程为,所以原点到的距离为,当时,直线的方程为,所以原点到的距离为,所以原点到直线距离为,故选C 点睛:本题考查了抛物线的定义,点到直线的距离公式及直线与抛物线的位置关系的应用,其中对于直线与圆锥曲线问题,通常通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,进而求解问题,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等12.设函数.若曲线与函数的图象有4个不同的公共点,则实数的取值范围是( )A. B. C. D. 【答案】A【解析】分析:由有,直线与函数的图象有4个不同的交点。数形结合求出的范围。详解:由有,显然,在同一坐标系中分别作出直线和函数的图象,当直线与相切时,求出,当直线与相切时,求得,所以,又当直线经过点时,此时与有两个交点,一共还是4个交点,符合。 ,综上,选A.点睛:本题主要考查函数图象的画法,求两个函数图象的交点的个数,考查了数形结合思想、等价转换思想,属于中档题。画出这两个函数的图象是解题的关键。 二.填空题:把答案填在答题卡上.13.已知,若幂函数为奇函数,且在上递减,则_【答案】-1【解析】【分析】由幂函数f(x)=x为奇函数,且在(0,+)上递减,得到a是奇数,且a0,由此能求出a的值【详解】2,1,1,2,3,幂函数f(x)=x为奇函数,且在(0,+)上递减,a是奇数,且a0,a=1故答案为:1【点睛】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题14.若满足约束条件 则 的最小值为_【答案】3【解析】【分析】本题首先可以通过题目所给出的不等式方程组绘出图像,然后确定图像的三个顶点坐标,最后将其分别带入中即可得出最小值。【详解】如图所示,根据题目所给的不等式方程组绘出的图形可知,交点为、,然后将其带入中可得,的最小值为3。【点睛】本题考查了线性规划的相关性质,解决本题的关键是能否根据题目所给条件画出可行域并在可行域中找出使目标函数取最值的点,考查数形结合思想,是简单题。15.在直角坐标系中,已知点,若点满足,则_.【答案】【解析】【分析】求出的坐标后可的值.【详解】因为,所以为的重心,故的坐标为即,故.填.【点睛】在三角形中,如果为三角形的重心,则,反之也成立.16.的内角所对的边成等比数列,则的最小值为_.【答案】【解析】【分析】利用余弦定理和基本不等式可求的最小值.【详解】因为成等比数列,所以,由基本不等式可以得到,当且仅当时等号成立,故的最小值为.【点睛】本题考查余弦定理、等比中项和基本不等式,此类问题是中档题.三解答题:解答应写出文字说明,证明过程或演算步骤。17.已知数列的前n项和Snn25n (nN+)(1)求数列的通项公式;(2)求数列的前n项和Tn .【答案】(1);(2)【解析】【分析】(1)运用数列的递推式:,计算可得数列的通项公式;(2)结合(1)求得,运用错位相减法,结合等比数列的求和公式,即可得到数列的前项和 .【详解】(1)因为,所以,时,也适合,所以 (2)因, 所以 两式作差得: 化简得,所以.【点睛】本题考查数列的通项公式的求法,等比数列的求和公式,考查数列的错位相减法,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);相减时注意最后一项的符号;求和时注意项数别出错;最后结果一定不能忘记等式两边同时除以.18.在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方法,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)年龄频数1030302055赞成人数92524921(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?年龄不低于45岁的人数年龄低于45岁的人数合计赞成不赞成合计(2)若从年龄在,调查的人中各随机选取1人进行追踪调查,求选中的2人中赞成“使用微信交流”的人数恰好为1人的概率.0.0250.0100.0050.0013.8416.6357.87910.828参考公式:,其中.【答案】(1)见解析;(2)【解析】【分析】(1)通过年龄的频数分布及对“使用微信交流”赞成的人数表,可以求出:年龄不低于45岁的人数中,其中赞成的人数为9+2+1=12,不赞成的人数为20+5+5-12=18;同理可算出,年龄低于45岁的人数中,赞成的人数与不赞成的人数,然后填表;根据所给的公式,可以计算出的值,对照临界值表,可以判断出是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”.(2)年龄中有5人,不赞成的记为,;赞成的记为,年龄中有5人,不赞成的记为,赞成记,列出从年龄,中各取1人可能情况, 然后查出恰好有1人使用微信交流的可能情况的个数,最后求出概率.【详解】解:(1)根据频数分布,填写列联表如下:年龄不低于45岁的人数年龄低于45岁的人数合计赞成125870不赞成181230合计3070100计算观测值,对照临界值表知,在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”; (2)年龄中有5人,不赞成的记为,;赞成的记为,年龄中有5人,不赞成的记为,赞成记,则从年龄,中各取1人共有25种可能,结果如下:,恰好有1人使用微信交流的共有11种可能,结果如下:,所以从年龄在,调查的人中各随机选取一人进行追踪调查,选中的2人中赞成“使用微信交流”的人数恰好为一人的概率.【点睛】本题考查了通过补完列联表,计算出,然后做出数学判断,考查了古典概型,考查了数学应用能力、数学运算能力.19.如图,在直三棱柱中,为棱的中点.(1)证明:平面;(2)已知,的面积为,为线段上一点,且三棱锥的体积为,求.【答案】(1)见解析(2)【解析】试题分析:(1)取的中点,连接,可推出为的中点,从而推出四边形为平行四边形,即可证明平面;(2)过作于,连接,可推出平面,从而推出,设,表示出,根据的面积为,可求得得值,设到平面的距离为,根据,即可求得,从而求得.试题解析:(1)证明:取的中点,连接,.侧面为平行四边形为的中点,又四边形为平行四边形,则.平面,平面平面.(2)解:过作于,连接,平面.又平面.设,则,的面积为,.设到平面的距离为,则.与重合,.20.已知抛物线 ,M为直线上任意一点,过点M作抛物线C两条切线MA,MB,切点分别为A,B.(1)当M的坐标为(0,-1)时,求过M,A,B三点的圆的方程; (2)证明:以为直径的圆恒过点M.【答案】(1)(2)见证明【解析】【分析】(1)设出过点的切线方程,与抛物线方程联立,得到一个元二次方程,它的判别式为零,可以求出切线方程的斜率,这样可以求出A,B两点的坐标,设出圆心的坐标为,由,可以求出,最后求出圆的方程;(2)设,设切点分别为,把抛物线方程化,求导,这样可以求出切线的斜率,求出切线 的方程,切线的方程,又因为切线过点,切线也过点,这样可以发现,是一个关于的一元二次方程的两个根,计算出,计算,根据根与系数关系,化简,最后计算出=0,这样就证明出以为直径的圆恒过点M.【详解】解:(1)解:当的坐标为时,设过点的切线方程为,由消得. (1)令,解得.代入方程(1),解得A(2,1),B(-2,1). 设圆心的坐标为,由,得,解得.故过三点的圆的方程为 (2)证明:设,由已知得,设切点分别为,所以,切线 的方程为即,切线的方程为即 又因为切线过点,所以得. 又因为切线也过点,所以得. 所以,是方程的两实根,由韦达定理得 因为,所以将代入,得. 所以以为直径的圆恒过点【点睛】本题考查利用直线与抛物线的位置关系,求出切线的斜率,又考查了利用导数,研究抛物线的切线问题,同时考查了求过三点的圆的方程.考查了方程思想、数学运算能力.21.已知函数 ,(1)求函数在点处的切线方程;(2)当 时,恒成立,求a的取值范围【答案】(1)(2)【解析】【分析】()将代入解析式,求出切点坐标,对函数求导,将代入导函数,即可求得斜率,由点斜式方程求出切线方程;()将不等式化简为一侧为0的形式,构造新的函数,对新函数求导分析,由于导函数正负无法直接判断,所以对导函数进行求导分析,对参数进行分类讨论,从而逐步探究函数的单调性等性质,求出参数的取值范围.【详解】(),函数在点点处的切线方程为.(),令,则,若,则,在上单调递增,在上单调递增,即,不符合题意.若,则当时,在上单调递增,在上单调递增,即,不符合题意.若,则当时,在上单调递减,在上单调递减,即,符合题意.综上所述,的取值范围是.【点睛】本题考查了切线方程的求法,以及恒成立问题,求切线有两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训确认表课件
- 导气安全服务培训内容课件
- 2025年小学口腔试题及答案
- photoshop基础考试题及答案
- 医学概论题库及答案
- 人教版九年级下册化学全册教案
- 工程设备维修方案范本(3篇)
- 初中数学状元试卷及答案
- 2025年指示灯具:设备指示灯项目建议书
- 连锁遗传试题及答案
- PMBOK指南第6版中文版
- 第五章-针织服装设计与样板制作经典版课件
- 肿瘤的介入治疗课件最新版
- 基坑土石方开挖安全专项施工方案
- 中小学心理健康教育指导纲要考试试题及答案
- 社会统计学-全套课件
- 物流公司道路运输许可证申请资料范文
- 六年级上册英语试题Unit1 I go to school at 8:00. 阶段训练一-人教精通版-(无答案 )
- (完整版)湘教版地理必修一知识点总结
- [中天]香港置地北郡商业施工策划(共172页)
- 销售人员技能或能力分级定义表一
评论
0/150
提交评论