已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Real TimeTrackingofNon RigidObjectsusingMeanShift DorinComaniciuVisvanathanRameshPeterMeer Imaging VisualizationDepartmentElectrical ComputerEngineeringDepartment SiemensCorporateResearchRutgersUniversity CollegeRoadEast Princeton NJ BrettRoad Piscataway NJ Abstract Anewmethodforreal timetrackingofnon rigidob jectsseenfromamovingcameraisproposed Thecen tralcomputationalmoduleisbasedonthemeanshift iterationsand ndsthemostprobabletargetpositionin thecurrentframe Thedissimilaritybetweenthetarget model itscolordistribution andthetargetcandidates isexpressedbyametricderivedfromtheBhattacharyya coe cient Thetheoreticalanalysisoftheapproach showsthatitrelatestotheBayesianframeworkwhile providingapractical fastande cientsolution The capabilityofthetrackertohandleinreal timepartial occlusions signi cantclutter andtargetscalevaria tions isdemonstratedforseveralimagesequences Introduction Thee cienttrackingofvisualfeaturesincomplex environmentsisachallengingtaskforthevisioncom munity Real timeapplicationssuchassurveillanceand monitoring perceptualuserinterfaces smart rooms andvideocompression allrequire theabilitytotrackmovingobjects Thecomputational complexityofthetrackeriscriticalformostapplica tions onlyasmallpercentageofasystemresourcesbe ingallocatedfortracking whiletherestisassignedto preprocessingstagesortohigh leveltaskssuchasrecog nition trajectoryinterpretation andreasoning Thispaperpresentsanewapproachtothereal time trackingofnon rigidobjectsbasedonvisualfeatures suchascolorand ortexture whosestatisticaldistribu tionscharacterizetheobjectofinterest Theproposed trackingisappropriateforalargevarietyofobjectswith di erentcolor texturepatterns beingrobusttopartial occlusions clutter rotationindepth andchangesin cameraposition Itisanaturalapplicationtomotion analysisofthemeanshiftprocedureintroducedearlier Themeanshiftiterationsareemployedto nd thetargetcandidatethatisthemostsimilartoagiven targetmodel withthesimilaritybeingexpressedbya metricbasedontheBhattacharyyacoe cient Vari oustestsequencesshowedthesuperiortrackingperfor mance obtainedwithlowcomputationalcomplexity Thepaperisorganizedasfollows Section presents andextendsthemeanshiftproperty Section intro ducesthemetricderivedfromtheBhattacharyyacoef cient Thetrackingalgorithmisdevelopedandana lyzedinSection Experimentsandcomparisonsare giveninSection andthediscussionsareinSection MeanShiftAnalysis Wede nenextthesamplemeanshift introducethe iterativemeanshiftprocedure andpresentanewthe oremshowingtheconvergenceforkernelswithconvex andmonotonicpro les Forapplicationsofthemean shiftpropertyinlowlevelvision ltering segmenta tion see SampleMeanShift Givenasetfx i g i n ofnpointsinthed dimensionalspaceR d themultivariatekerneldensity estimatewithkernelK x andwindowradius band width h computedinthepointxisgivenby f x nh d n X i K x x i h Theminimizationoftheaverageglobalerrorbetween theestimateandthetruedensityyieldsthemultivariate Epanechnikovkernel p K E x c d d kxk ifkxk otherwise wherec d isthevolumeoftheunitd dimensionalsphere Anothercommonlyusedkernelisthemultivariatenor mal K N x d exp kxk Letusintroducethepro leofakernelKasafunc tionk RsuchthatK x k kxk For example accordingto theEpanechnikovpro leis k E x c d d x ifx otherwise andfrom thenormalpro leisgivenby k N x d exp x Employingthepro lenotationwecanwritethedensity estimate as f K x nh d n X i k x x i h Wedenote g x k x assumingthatthederivativeofkexistsforallx exceptfora nitesetofpoints AkernelG canbede nedas G x Cg kxk whereCisanormalizationconstant Then bytaking theestimateofthedensitygradientasthegradientof thedensityestimatewehave rf K x r f K x nh d n X i x x i k x x i h nh d n X i x i x g x x i h nh d n X i g x x i h P n i x i g x x i h P n i g x x i h x where P n i g x x i h canbeassumedtobe nonzero NotethatthederivativeoftheEpanechnikov pro leistheuniformpro le whilethederivativeofthe normalpro leremainsanormal Thelastbracketin containsthesamplemean shiftvector M h G x P n i x i g x x i h P n i g x x i h x andthedensityestimateatx f G x C nh d n X i g x x i h computedwithkernelG Usingnow and becomes rf K x f G x C h M h G x fromwhereitfollowsthat M h G x h C rf K x f G x Expression showsthatthesamplemeanshiftvec torobtainedwithkernelGisanestimateofthenormal izeddensitygradientobtainedwithkernelK Thisisa moregeneralformulationoftheproperty rstremarked byFukunaga p ASu cientConvergenceCondition Themeanshiftprocedureisde nedrecursivelyby computingthemeanshiftvectorM h G x andtrans latingthecenterofkernelGbyM h G x Letusdenoteby y j j thesequenceofsucces sivelocationsofthekernelG where y j P n i x i g y j x i h P n i g y j x i h j istheweightedmeanaty j computedwithkernelG andy isthecenteroftheinitialkernel Thedensity estimatescomputedwithkernelKinthepoints are f K n f K j o j n f K y j o j Thesedensitiesareonlyimplicitlyde nedtoobtain rf K Howeverweneedthemtoprovetheconvergence ofthesequences and Theorem IfthekernelKhasaconvexandmono tonicdecreasingpro leandthekernelGisde nedac cordingto and thesequences and are convergent TheTheorem generalizestheconvergenceshown in whereKwastheEpanechnikovkernel andG theuniformkernel ItsproofisgivenintheAppendix NotethatTheorem isalsovalidwhenweassociateto eachdatapointx i apositiveweightw i BhattacharyyaCoe cientBased MetricforTargetLocalization Thetaskof ndingthetargetlocationinthecurrent frameisformulatedasfollows Thefeaturezrepre sentingthecolorand ortextureofthetargetmodelis assumedtohaveadensityfunctionq z whilethetarget candidatecenteredatlocationyhasthefeaturedis tributedaccordingtop z y Theproblemisthento ndthediscretelocationywhoseassociateddensity p z y isthemostsimilartothetargetdensityq z Tode nethesimilaritymeasurewetakeintoaccount thattheprobabilityofclassi cationerrorinstatistical hypothesistestingisdirectlyrelatedtothesimilarity ofthetwodistributions Thelargertheprobabilityof error themoresimilarthedistributions Therefore contrarytothehypothesistesting weformulatethe targetlocationestimationproblemasthederivationof theestimatethatmaximizestheBayeserrorassociated withthemodelandcandidatedistributions Forthe moment weassumethatthetargethasequalprior probabilitytobepresentatanylocationyintheneigh borhoodofthepreviouslyestimatedlocation AnentitycloselyrelatedtotheBayeserroristhe Bhattacharyyacoe cient whosegeneralformisde nedby y p y q Z p p z y q z dz PropertiesoftheBhattacharyyacoe cientsuchasits relationtotheFishermeasureofinformation quality ofthesampleestimate andexplicitformsforvarious distributionsaregivenin Ourinterestinexpression is however moti vatedbyitsnearoptimalitygivenbytherelationship totheBayeserror Indeed letusdenoteby and twosetsofparametersforthedistributionspandqand by p q asetofpriorprobabilities Ifthevalue of issmallerfortheset thanfortheset it canbeproved that thereexistsasetofpriors forwhichtheerrorprobabilityfortheset islessthan theerrorprobabilityfortheset Inaddition starting from upperandlowererrorboundscanbederived fortheprobabilityoferror ThederivationoftheBhattacharyyacoe cientfrom sampledatainvolvestheestimationofthedensitiesp andq forwhichweemploythehistogramformulation Althoughnotthebestnonparametricdensityestimate thehistogramsatis esthelowcomputationalcost imposedbyreal timeprocessing Weestimatethedis cretedensity q f q u g u m with P m u q u fromthem binhistogramofthetargetmodel while p y f p u y g u m with P m u p u isestimated atagivenlocationyfromthem binhistogramofthe targetcandidate Hence thesampleestimateofthe Bhattacharyyacoe cientisgivenby y p y q m X u p p u y q u Thegeometricinterpretationof isthecosineof theanglebetweenthem dimensional unitvectors p p p p m and p q p q m Usingnow thedistancebetweentwodistribu tionscanbede nedas d y p p y q Thestatisticalmeasure iswellsuitedforthe taskoftargetlocalizationsince Itisnearlyoptimal duetoitslinktotheBayes error Notethatthewidelyusedhistograminter sectiontechnique hasnosuchtheoreticalfoun dation Itimposesametricstructure seeAppendix The Bhattacharyyadistance p orKullbackdi vergence p arenotmetricssincetheyviolate atleastoneofthedistanceaxioms Usingdiscretedensities isinvarianttothe scaleofthetarget uptoquantizatione ects His togramintersectionisscalevariant Beingvalidforarbitrarydistributions thedis tance issuperiortotheFisherlineardiscrim inant whichyieldsusefulresultsonlyfordistri butionsthatareseparatedbythemean di erence p Similarmeasureswerealreadyusedincomputervi sion TheCherno andBhattacharyyaboundshave beenemployedin todeterminethee ectivenessof edgedetectors TheKullbackdivergencehasbeenused in for ndingtheposeofanobjectinanimage Thenextsectionshowshowtominimize asa functionofyintheneighborhoodofagivenlocation byexploitingthemeanshiftiterations Onlythedistri butionoftheobjectcolorswillbeconsidered although thetexturedistributioncanbeintegratedintothesame framework TrackingAlgorithm Weassumeinthesequelthesupportoftwomodules whichshouldprovide a detectionandlocalizationin theinitialframeoftheobjectstotrack targets and b periodicanalysisofeachobjecttoaccountfor possibleupdatesofthetargetmodelsduetosigni cant changesincolor ColorRepresentation TargetModelLetfx i g i n bethepixelloca tionsofthetargetmodel centeredat Wede nea functionb R f mgwhichassociatestothe pixelatlocationx i theindexb x i ofthehistogram bincorrespondingtothecolorofthatpixel Theprob abilityofthecoloruinthetargetmodelisderivedby employingaconvexandmonotonicdecreasingkernel pro lekwhichassignsasmallerweighttothelocations thatarefartherfromthecenterofthetarget The weightingincreasestherobustnessoftheestimation sincetheperipheralpixelsaretheleastreliable be ingoftena ectedbyocclusions clutter orbackground Theradiusofthekernelpro leistakenequaltoone byassumingthatthegenericcoordinatesxandyare normalizedwithh x andh y respectively Hence wecan write q u C n X i k kx i k b x i u where istheKroneckerdeltafunction Thenormal izationconstantCisderivedbyimposingthecondition P m u q u fromwhere C P n i k kx i k sincethesummationofdeltafunctionsforu m isequaltoone TargetCandidatesLetfx i g i n h bethepixel locationsofthetargetcandidate centeredatyinthe currentframe Usingthesamekernelpro lek butwith radiush theprobabilityofthecoloruinthetarget candidateisgivenby p u y C h n h X i k y x i h b x i u whereC h isthenormalizationconstant Theradiusof thekernelpro ledeterminesthenumberofpixels i e thescale ofthetargetcandidate Byimposingthe conditionthat P m u p u weobtain C h P n h i k k y x i h k NotethatC h doesnotdependony sincethepixello cationsx i areorganizedinaregularlattice ybeingone ofthelatticenodes Therefore C h canbeprecalculated foragivenkernelanddi erentvaluesofh DistanceMinimization AccordingtoSection themostprobablelocation yofthetargetinthecurrentframeisobtainedbymin imizingthedistance whichisequivalenttomaxi mizingtheBhattacharyyacoe cient y Thesearch forthenewtargetlocationinthecurrentframestartsat theestimatedlocation y ofthetargetintheprevious frame Thus thecolorprobabilitiesf p u y g u m ofthetargetcandidateatlocation y inthecurrent framehavetobecomputed rst UsingTaylorexpan sionaroundthevalues p u y theBhattacharyyaco e cient isapproximatedas aftersomemanipula tions p y q m X u p p u y q u m X u p u y s q u p u y whereitisassumedthatthetargetcandidate f p u y g u m doesnotchangedrasticallyfromthe initialf p u y g u m andthat p u y forall u m Introducingnow in weobtain p y q m X u p p u y q u C h n h X i w i k y x i h where w i m X u b x i u s q u p u y Thus tominimizethedistance thesecondterm inequation hastobemaximized the rstterm beingindependentofy Thesecondtermrepresents thedensityestimatecomputedwithkernelpro lekat yinthecurrentframe withthedatabeingweightedby w i Themaximizationcanbee cientlyachieved basedonthemeanshiftiterations usingthefollowing algorithm BhattacharyyaCoe cient p y q Maximization Giventhedistributionf q u g u m ofthetargetmodel andtheestimatedlocation y ofthetargetinthepre viousframe Initializethelocationofthetargetinthecur rentframewith y computethedistribution f p u y g u m andevaluate p y q P m u p p u y q u Derivetheweightsfw i g i n h accordingto Basedonthemeanshiftvector derivethenew locationofthetarget y P n h i x i w i g y x i h P n h i w i g y x i h Updatef p u y g u m andevaluate p y q P m u p p u y q u While p y q p y q Do y y y Ifk y y k Stop OtherwiseSet y y andgotoStep Theproposedoptimizationemploysthemeanshiftvec torinStep toincreasethevalueoftheapproximated Bhattacharyyacoe cientexpressedby Sincethis operationdoesnotnecessarilyincreasethevalueof p y q thetestincludedinStep isneededtovali datethenewlocationofthetarget However practical experiments trackingdi erentobjects forlongperi odsoftime showedthattheBhattacharyyacoe cient computedatthelocationde nedbyequation was almostalwayslargerthanthecoe cientcorresponding to y Lessthan oftheperformedmaximizations yieldedcaseswheretheStep iterationswerenecessary Theterminationthreshold usedinStep isderived byconstrainingthevectorsrepresenting y and y to bewithinthesamepixelinimagecoordinates Thetrackingconsistsinrunningforeachframethe optimizationalgorithmdescribedabove Thus given thetargetmodel thenewlocationofthetargetinthe currentframeminimizesthedistance intheneigh borhoodofthepreviouslocationestimate ScaleAdaptation Thescaleadaptationschemeexploitstheproperty ofthedistance tobeinvarianttochangesinthe objectscale Wesimplymodifytheradiushofthe kernelpro lewithacertainfraction weused letthetrackingalgorithmtoconvergeagain andchoose theradiusyieldingthelargestdecreaseinthedistance AnIIR lterisusedtoderivethenewradius basedonthecurrentmeasurementsandoldradius Experiments Theproposedmethodhasbeenappliedtothetask oftrackingafootballplayermarkedbyahand drawn ellipsoidalregion rstimageofFigure These quencehas framesof pixelseachand theinitialnormalizationconstants determinedfrom thesizeofthetargetmodel were h x h y TheEpanechnikovpro le hasbeenusedforhis togramcomputation therefore themeanshiftitera tionswerecomputedwiththeuniformpro le Thetar gethistogramhasbeenderivedintheRGBspacewith bins Thealgorithmrunscomfortablyat fpsona MHzPC Javaimplementation ThetrackingresultsarepresentedinFigure The meanshiftbasedtrackerprovedtoberobusttopartial occlusion clutter distractors frame inFigure Figure Footballsequence Trackingtheplayerno withinitialwindowof pixels Theframes and areshown andcameramotion Sincenomotionmodelhasbeen assumed thetrackeradaptedwelltothenonstationary characteroftheplayer smovements whichalternates abruptlybetweenslowandfastaction Inaddition theintenseblurringpresentinsomeframesanddueto thecameramotion didnotin uencethetrackerper formance frame inFigure Thesamee ect however canlargelyperturbcontourbasedtrackers 050100150 2 4 6 8 10 12 14 16 18 Frame Index Mean Shift Iterations Figure Thenumberofmeanshiftiterationsfunction oftheframeindexfortheFootballsequence Themean numberofiterationsis perframe Thenumberofmeanshiftiterationsnecessaryfor eachframe onescale intheFootballsequenceisshown inFigure Onecanidentifytwocentralpeaks corre spondingtothemovementoftheplayertothecenter oftheimageandbacktotheleftside Thelastand largestpeakisduetothefastmovementfromtheleft totherightside 40 20 0 20 40 40 20 0 20 40 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 X Y Bhattacharyya Coefficient Initial location Convergence point Figure ValuesoftheBhattacharyyacoe cientcor respondingtothemarkedregion pixels in frame fromFigure Thesurfaceisasymmetric duetotheplayercolorsthataresimilartothetarget Fourmeanshiftiterationswerenecessaryforthealgo rithmtoconvergefromtheinitiallocation circle Todemonstratethee ciencyofourapproach Fig ure presentsthesurfaceobtainedbycomputingthe Bhattacharyyacoe cientfortherectanglemarkedin Figure frame Thetargetmodel theselected ellipticalregioninframe hasbeencomparedwith thetargetcandidatesobtainedbysweepingtheellipti calregioninframe insidetherectangle Whilemost ofthetrackingapproachesbasedonregions mustperformanexhaustivesearchintherectangleto ndthemaximum ouralgorithmconvergedinfourit erationsasshowninFigure Notethatsincethebasin ofattractionofthemodecoverstheentirewindow the correctlocationofthetargetwouldhavebeenreached alsofromfartherinitialpoints Anoptimizedcompu tationoftheexhaustivesearchofthemode hasa muchlargerarithmeticcomplexity dependingonthe chosensearcharea Thenewmethodhasbeenappliedtotrackpeopleon subwayplatforms Thecamerabeing xed additional geometricconstraintsandalsobackgroundsubtraction canbeexploitedtoimprovethetrackingprocess The followingsequences however havebeenprocessedwith thealgorithmunchanged A rstexampleisshowninFigure demonstrating thecapabilityofthetrackertoadapttoscalechanges Thesequencehas framesof pixelseach andtheinitialnormalizationconstantswere h x h y Figure presentssixframesfroma minutese quenceshowingthetrackingofapersonfromthemo mentsheentersthesubwayplatformtillshegetson thetrain frames Thetrackingperformanceis remarkable takingintoaccountthelowqualityofthe processedsequence duetothecompressionartifacts A thoroughevaluationofthetracker however issubject toourcurrentwork Theminimumvalueofthedistance foreach frameisshowninFigure Thecompressionnoise determinedthedistancetoincreasefrom perfect match toastationaryvalueofabout Signi cant deviationsfromthisvaluecorrespondtoocclusionsgen eratedbyotherpersonsorrotationsindepthofthetar get Thelargedistanceincreaseattheendsignalsthe completeocclusionofthetarget Discussion Byexploitingthespatialgradientofthestatistical measure thenewmethodachievesreal timetrack ingperformance whilee ectivelyrejectingbackground clutterandpartialocclusions Notethatthesametechniquecanbeemployed toderivethemeasurementvectorforoptimalpredic tionschemessuchasthe Extended Kalman lter p ormultiplehypothesistrackingapproaches Inreturn thepredictioncandetermine thepriors de ningthepresenceofthetargetinagiven neighborhood assumedequalinthispaper Thiscon nectionishoweverbeyondthescopeofthispaper A patentapplicationhasbeen ledcoveringthetracking algorithmtogetherwiththeKalmanextensionandvar iousapplications We nallyobservethattheideaofcentroidcompu tationisalsoemployedin Themeanshiftwas u
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026国网天津市高校毕业生提前批招聘(约450人)笔试模拟试题浓缩500题及答案详解(夺冠)
- 2026年六盘水市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解1套
- 2026国网浙江省电力公司高校毕业生提前批招聘笔试参考题库浓缩500题及完整答案详解
- 2026国网山东省电力公司高校毕业生提前批招聘笔试参考题库浓缩500题附答案详解(典型题)
- 2025国网青海省电力校园招聘(提前批)笔试模拟试题浓缩500题及答案详解(名师系列)
- 2026秋季国家管网集团山东分公司高校毕业生招聘笔试备考题库(浓缩500题)及参考答案详解(达标题)
- 2026国网安徽省电力校园招聘(提前批)笔试模拟试题浓缩500题及答案详解1套
- 2025国网广西高校毕业生提前批招聘(约450人)笔试模拟试题浓缩500题附答案详解(典型题)
- 2026中铁工程设计咨询集团有限公司高校毕业生招聘考试参考试题(浓缩500题)含答案详解(巩固)
- 2026国网湖南省电力公司高校毕业生提前批招聘笔试模拟试题浓缩500题附答案详解(考试直接用)
- 第4课《社会主义基本经济制度》第三框《社会主义市场经济体制》课件(高教版2023·基础模块)
- T CEC站用低压交流电源系统剩余电流监测装置技术规范
- 全球及中国牛肉行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告(2024-2030)
- MOOC 社会心理学-西安交通大学 中国大学慕课答案
- 单细胞基因组学与转录组学分析
- 浅谈供应商沟通技巧课件
- 幼儿园冬季教职工安全培训
- 精益生产沙盘演练教材
- 大数据与社交媒体
- 肢体离断伤的护理查房ppt
- 申请法院调查取证申请书
评论
0/150
提交评论