裘松良-高校数学教学应充分体现数学发展规律_第1页
裘松良-高校数学教学应充分体现数学发展规律_第2页
裘松良-高校数学教学应充分体现数学发展规律_第3页
裘松良-高校数学教学应充分体现数学发展规律_第4页
裘松良-高校数学教学应充分体现数学发展规律_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

p A Ny u 5 3 2019 p U M 0 w t n 2019 11 30 t n p A Ny u 5 2019 11 301 21 Jj 1yG 2U M 3 U Y t n p A Ny u 5 2019 11 302 21 yG i 5 5 2015 1 27I 5 w6 o ron f o X t M 7L vkS Uk M IS p I 8vk y3IT u o E u I o 1 L lzc OX k 1 4e 0 2016 4 15 o ron3 AOrN t n p A Ny u 5 2019 11 303 21 yG rn 3 g 3 I f N I 1 e 5r e 0 9 2018 1 3I o ron rNn J M U AO n I N uy Ude 5 0o r U f u J 5 Lu 5K 6 Lu z 7 A o Y d Ny g u 5 K Jp 0 f2 f1 t n p A Ny u 5 2019 11 308 21 U Y eg 2 Let f3 x sinx x for x 0 2 f 0 3 x x cosx sinx x2 f4 x x2 f 0 4 x x sinx 0 f 0 5 x 1 x2 x 1 x log 1 x f6 x x2 f 0 6 x x 1 x 2 0 where h C 0 b diff erentiable on 0 b and on 0 b f 0 7 x 1 x2 xh x Z x 0 h t dt f8 x x2 f 0 8 x xh 0 x 0 f8 f7 resp The computation is sometimes verbose and complicated Common features of the functions in egs 1 4 Recall indetermined forms and l H opital s Rule LR 2 Question 1 Can we fi nd a rule which is similar to LR and makes this kind of study easier t n p A Ny u 5 2019 11 3010 21 U Y ii Analyzing the general case 1 Expected Goal A criterion for the mon properties which is similar to LR 2 In detailed mathematical language For a b 0 resp f x f a g x g a if g x g a g0 x 0 resp f0 y g0 y g x g a g 0 x 0 5 x y a b with y x so that F namely 1 is valid iii An answer to Question 1 Theorem 1 MLR For a b let f g a b R be two continuous functions which are diff erentiable on a b with g0 x 6 0 for x a b If f 0 g0 is resp on a b then so are F x f x f a g x g a and G x f x f b g x g b Moreover mon properties of f 0 g0 is strict so are those of F and G G D Anderson M K Vamanamurthy and M Vuorinen Conformal Invariants Inequalities and Quasiconformal Maps J Wiley Sons 1997 t n p A Ny u 5 2019 11 3013 21 U Y Proof W L G we may assume that f 0 g0 is and g0 x 0 for x a b By Cauchy s Mean Value Thm x a b a x s t F x f x f a g x g a f 0 g0 f 0 x g0 x 6 Clearly g x 0 for all x a b Multiplying 6 by g x g a g0 x we obtain g x g a f 0 x f x f a g0 x 0 F0 x d dx f x f a g x g a 0 x a b 7 yielding the mon property of F The pf of the mon of G is similar Finally if f 0 g0 is strict monotone on a b then both ineqs in 6 and 7 are strict and hence F and G are strictly monotone t n p A Ny u 5 2019 11 3014 21 U Y iv Remark The condition in Thm 1 the mon of f 0 g0 is suffi cient but not necessary v Egs 1 Egs 1 4 aboved mentioned 2 eg 5 f9 x 1 x tanx for x 0 2 f10 x ex 1 x for x 0 3 Appls to the study of convexity concavity properties In eg 2 f3 x 1 x sinx for x 0 2 f 0 3 x x cosx sinx x2 f4 x x2 f 0 4 x x2 0 sinx 2x 1 2f3 x f 0 3 f3is convex t n p A Ny u 5 2019 11 3015 21 U Y In eg 3 f5 x 1 x log 1 x for x 0 f 0 5 x 1 x2 x 1 x log 1 x f6 x x2 f 0 6 x x2 0 1 2 1 x 2 f 0 5 f5is convex vi Open problem Can we establish a similar criterion for the concavity convexity properties of functions of the form f g II Another Criterion for the Mon Properties of Functions Sometimes we need to show the mon properties of functions of the form x P 0 anxn P 0 bnxn for x I an interval Similar to part I Analysis of examples Question Results t n p A Ny u 5 2019 11 3016 21 U Y Theorem 2 S Ponnusamy and M Vuorinen Mathematika 44 1997 Let A x P n 0anx n and B x P n 0bnx n with bn 0 for all n N0 N 0 be two real power series converging on r r If the non constant sequence an bn is in n N0 then the function x A x B x is strictly resp on 0 r Remark A general verersion of Theorem 2 was proved by S Ponnusamy and M Vuorinen in their paper Asymptotic expansions and inequalities for hypergeometric functions Mathematika 1997 44 278 301 t n p A Ny u 5 2019 11 3017 21 U Y Theorem 3 Songliang Qiu Xiaoyan Ma Yuming Chu J Math Anal Appl 474 2019 1306 1337 Suppose that the real power series A x P n 0anx n and B x P n 0bnx n with bn 0 are of a common radius r 0 of convergence and an bn is a non constant sequence Let x A x B x 1 If there is an n0 N such that the sequence an bn is for 0 n n0 and for n n0 then is on 0 r iff 0 r 0 0 r 0 resp 2 If there is an n0 N such that the sequence an bn is for 0 n n0 and for n n0 and if 0 r 0 then there exists a number x0 0 r such that is strictly on 0 x0 and resp on x0 r t n p A Ny u 5 2019 11 3018 21 U Y III A Newest Criterion for the Mon Properties of Functions i Problem Sometimes we need to study the monotonicity properties of the functions of the forms F1 x Z 0 e xtf t dt Z 0 e xtg t dt 1 8 or even more general forms G1 x Z d c f x t dt Z d c g x t dt 1 9 for x a b Question 2 Can we determine the monotonicity properties of the functions in 8 by those of f g in t t n p A Ny u 5 2019 11 3019 21 U Y ii An answer to the Question 2 Theorem 4 QIU 2018 Let f and g be real functions on 0 which have Laplace transformations Z 0 e xtf t dt and Z 0 e xtg t dt and let F1 x R 0 e xtf t dt R 0 e xtg t dt Suppose that g t 6 0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论