




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
拉格朗日中值定理的应用论文论文题目拉格朗日中值定理姓 名 学 号 所在学院 年级专业 完成时间 年 月 日拉格朗日中值定理的应用摘要:以罗尔中值定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的重要理论基础,而拉格朗日中值定理因其中值性是几个中值定理中最重要的一个,在微分中值定理和高等数学中有着承上启下的重要作用。中值定理的主要用于理论分析和证明,例如利用导数判断函数单调性、凹凸性、取极值、拐点等项重要函数性态提供重要理论依据,从而把握函数图像的各种几何特征。总之,微分学中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的重要工具。而拉格朗日中值定理作为微分中值定理中一个承上启下的一个定理,研究其定理的证明方法,力求正确地理解和掌握它,并在此基础上深入了解它的一些重要应用,是十分必要的,鉴于课本中对拉格朗日中值定理的应用只是简单的举了例子,而很多研究者也只是研究了它在某个方面的应用,并没有进行系统的总结,有鉴于此,本文将对其应用进行了深入的总结。关键词:拉格朗日中值定理;应用;极限;收敛Applications of Lagranges mean value theorem Abstract:A group of mean value theorem which includes Rolles mean value theorem , Lagranges mean value theorem and Cauchys mean value theorem is the theoretical basis of the differential calculus. And Lagranges mean value theorem is the most important one of these mean value theorems because of its property median and continuity. Mean value theorems main function include theory analysis and proof, such as providing theoretical basis for judging function monotonicity, convexity, inflection point, and calculating extreme value by derivative, so that we can grasp the various geometric characteristic function image. All in all, differential mean value theorem is the communication bridge between the derivative value and the function value. And it is even the tool of inferring the whole nature of function by the local nature of derivative. As a structure connecting ecosystem and individuals in differential mean value theorem, it is very important to research Lagranges mean value theorems way to prove, understand and master it correctly, even keep gaining insight into its important applications. There is no special explanation about the applications of Lagranges mean value theorem and many researchers also just studied it in some applications and no systematic summary. This article will give the in-depth summary.Keywords:Lagranges mean value theorem; Application; Limit; Convergence目录目录引言:1一、拉格朗日中值定理及其证明21.定理内容:22.几何意义:23.定理证明:2二、拉格朗日中值定理的应用31.利用拉格朗日中值定理证明不等式32.利用拉格朗日中值定理证明等式(包含恒等式和等式)43.利用拉格朗日中值定理求极限44.利用拉格朗日中值定理判别级数的敛散性55.利用拉格朗日中值定理估值56.利用拉格朗日中值定理研究函数性态67.利用拉格朗日中值定理证明方程根的存在性7三、结论8Error! No text of specified style in document.引言: 罗尔定理、拉格朗日中值定理、柯西定理以及泰勒公式因其中值性,是微分学的重要的和基本的定理,所以统称微分中值定理,以拉格朗日中值定理作为中心,它们之间的密切关系可用示意图表示如下:罗尔定理拉格朗日定理柯西定理泰勒公式 特例 推广 以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,特别是拉格朗日中值定理。因为它建立了导数值与函数值之间的定量联系,因而可用中值定理通过导数从而研究出函数的性态。中值定理的主要用于理论分析和证明,例如为利用导数判断函数单调性、凹凸性、拐点、取极值等各项重要函数性态提供重要理论依据,从而可以准确的把握函数图像的各种几何特征。总之,微分中值定理是沟通函数值与导数值之间的重要桥梁,是利用导数的局部性质推断函数的整体性质的工具。而拉格朗日中值定理作为其中一个承上启下的定理,力求正确地理解和掌握它,并在此基础上深入了解它的一些重要应用,这是十分必要的。一、拉格朗日中值定理及其证明1.定理内容: 若函数满足如下条件:在闭区间上连续;在开区间内可导;则在内至少存在一点,使。2.几何意义: 函数在区间上的图形是连续光滑曲线弧 上至少有一点,曲线在点的切线平行于弦。如图 3.定理证明:(1)教材证法从拉格朗日中值定理的条件与结论可见,若在闭区间两端点的函数值相等,即,则拉格朗日中值定理就是罗尔中值定理(如果函数满足条件:在闭区间上连续;在开区间内可导;(3),则在内至少存在一点 ,使得)。 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形。所以,我们只须对函数作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理.证明:作辅助函数 显然,函数满足在闭区间上连续,在开区间内可导,而且于是由罗尔中值定理知道,至少存在一点,使.即.(2)用作差法引入辅助函数法证明:作辅助函数 ,显然,函数在闭区间上连续,在开区间内可导,。因此,由罗尔中值定理得,至少存在一点,使得,即 二、拉格朗日中值定理的应用拉格朗日中值定理作为微分中值定理的核心,有着广泛的应用,主要有以下几个方面:利用拉格朗日中值定理证明等式和不等式、利用拉格朗日中值定理求极限、证明级数收敛、研究函数在区间上的性质、估值等问题。1.利用拉格朗日中值定理证明不等式例1当x0时,证明。证明:做辅助函数。函数在定义域上可导,故对于0,有在闭区间 上连续,在开区间上可导。则至少存在一点,使得=,而,。当0时,有,即,又当时,有, 所以得证。 对于证明不等式, 关键怎样构造函数, 其后巧用拉格朗日中值定理, 画龙点睛恰到好处。2.利用拉格朗日中值定理证明等式(包含恒等式和等式)例 2证明 恒等。证明:令, 则在时有意义,且 。 在时,(为常数)。 又取内任一点,如,有, 且,所以端点值也成立, 有推论恒等。 由拉格朗日中值定理知,函数在定义域内取两点,(不妨设)有。那么若恒为0,则有,所以,由的任意性可知,在定义域内函数值恒等。3.利用拉格朗日中值定理求极限例3 求极限 。解:分母是两式相减的情形,可构造, 易知函数在区间上是符合定理条件的。所以,其中,当时,。 所以。在有些求极限问题当中,用常规方法很难入手,但是运用拉格朗日中值定理却可以迎刃而解,尤其是一些比较复杂的分式的极限计算问题。4.利用拉格朗日中值定理判别级数的敛散性例4证明调和级数是否收敛证明:可做辅助函数为,在区间上符合拉格朗日中值定理的要求。则存在一点,使。所以有,所以,由于,所以是发散的。在级数敛散性的判别问题上,可以构造辅助函数,研究在各个区间上的特点,最后相加可以进行化简,利用级数敛散性的判别法则给出判断。5.利用拉格朗日中值定理估值 对于证明估值问题,尤其是二级或者二级以上的导函数估值, 一般情况下通常选用泰勒公式证明比较简便。 但是对于某些积分上的估值,可以采用拉格朗日中值定理中值定理来证明。 例5 设导函数在上连续,且有,记M=max设设导函数f(x)在a,c上连续且f(a) = f(b) = 0, 记M = 。求证:。 证明: 对任意的b a,c, 由拉格朗日中值定理可知: = = =。 令,则有, 所以,原题得证,即。6.利用拉格朗日中值定理研究函数性态 若在上连续,在内可导,则在上(若在与之间),这可视为函数的一种变形,它建立了函数与导数的关系,我们可以用它来研究有关函数性态,如函数的一致连续、单调性等.(1)一致连续例6 证明如果在上可导,且,有, 其中为常数,则在上一致连续.证明 :,在以为端点的区间上, 有 ,且介于之间。 再利用已知条件,有 即 在 上满足Lipschitz条件, 则在上一致连续。(2) 单调性例7 试证:若函数在 上可导,单调递增,且,则函数在上单调递增。证明:对任意的,且 ,则在和上均满足 拉格朗日中值定理,于是分别存在, 。由于 单调递增,且 ,所以 ,即: ,通分移项整理得 ,即函数在上单调递增。(3) 有界性例8设在内可导且有界,试证在有界证明:任取,有拉格朗日中值定理知: (在之间),可得:+,式中是在内的界,有,即在内有界。7.利用拉格朗日中值定理证明方程根的存在性 运用拉格朗日中值定理证明根的存在性的关键在于:构造辅助函数,运用拉格朗日中值定理或者它的特殊形式罗尔中值定理与连续函数的介值性等证明根的存在性。例9设在上可导,且对于内的所有点,有证明方程在内有唯一实根。证明:存在性:令则在上可导,又 因,且, 故由介值定理得在内至少有一个零点,即方程在(0,1)内至少有一实根。 唯一性:设方程在内有两个实根,不妨设 则有因在 上满足拉格朗日中值定理,所以至少存在一使。即在内是少存在一点,使得这与题设矛盾。所以 , 假设不成立,即方程在内有唯一实根。三、结论本文
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 寻找身边的榜样心得体会
- 江西省景德镇市乐平市2024-2025学年度下学期期末学业评价八年级语文试题(含答案)
- 2025年辽宁省抚顺市新宾县木奇镇中学中考数学模拟试卷(二)(含答案)
- 2025年秋季开学第一课《翻越你的浪浪山》课件
- 餐饮连锁品牌的市场竞争研究
- 2025关于租房合同协议书范本CC
- 汉字中的象形字互动课件
- 水龙吟教学课件苏轼
- 鸡舍消毒与卫生管理
- 小升初语文古诗鉴赏知识点衔接-《意象意境》练习(含答案)
- 《活在课堂里》读书分享
- DB1331T 063-2023雄安新区地埋管地源热泵系统工程技术规程
- 《突破式沟通技巧》培训课件:高效沟通赋能成长
- 中学学生会检查细则说明表格
- TLYCY 3071-2024 森林草原防火无人机监测技术规范
- 《急诊科患者气道管理》课件
- 人教版初中九年级全册英语单词表(完整版)
- 合伙人股权激励制度
- 导尿管相关尿路感染预防与控制
- 《新媒体写作与传播(第2版)》教学大纲、课程标准、习题答案
- 骨质疏松症完整版本
评论
0/150
提交评论