楼深基坑支护及施工组织设计毕业论文.doc_第1页
楼深基坑支护及施工组织设计毕业论文.doc_第2页
楼深基坑支护及施工组织设计毕业论文.doc_第3页
楼深基坑支护及施工组织设计毕业论文.doc_第4页
楼深基坑支护及施工组织设计毕业论文.doc_第5页
已阅读5页,还剩75页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

土木工程毕业设计楼深基坑支护及施工组织设计毕业论文目录内容摘要2目录4文 献 综 述7第一章 设计方案综合说明121.1 概述121.1.1 工程概况121.1.2 场地地形、地貌及地质构造概况121.1.3 场地内各岩土层的分布、性质131.1.4 场地地下水概况131.1.5 基坑侧壁安全等级及重要性系数131.2 设计总说明131.2.1 设计依据131.2.2 支护结构方案比较与选取141.3 基坑监测20第二章 基坑支护结构设计计算书212.1 设计计算212.1.1 地质计算参数212.1.2 计算区段的划分212.1.3 计算方法212.1.4 土压力计算212.3 AB .BC段支护结构设计计算232.2.1 侧向土压力计算242.2.2 等值梁计算桩的嵌固深度:252.2.3 配筋计算262.2.4 锚杆设计262.2.5 整体稳定性验算272.2.6 抗倾覆稳定性验算282.2.7 抗隆起验算282.2.8 抗管涌验算302.2.9 变形验算302.3 CD .AD段支护结构设计计算312.3.2 等值梁计算桩的嵌固深度:332.3.3 配筋计算342.3.4 锚杆设计352.3.5 整体稳定性验算352.3.6 抗倾覆稳定性验算372.3.7 抗隆起验算372.3.8 抗管涌验算382.3.9变形验算392.4 圈梁设计计算402.4.1 AB.BC段圈梁设计计算40正截面强度计算40 斜截面强度计算402.4.2 DA.CD 段圈梁设计计算40正截面强度计算40 斜截面强度计算402.5 AB.BC段基坑止水设计412.5.1 止水桩长确定412.5.2 基坑止水帷幕设计412.6 CD.DA段基坑止水设计412.6.1 止水桩长确定412.6.2基坑止水帷幕设计412.7 基坑监测方案412.7.1 基坑及周围环境的监测、测试412.7.2 监测与测试的控制要求:422.7.3 观测频率42第三章 施工组织设计433.1 工程概况433.1.1 工程概况433.1.2 现场施工条件433.1.3 施工主要特点433.2 施工部署433.2.1 现场总平面布置433.2.2施工指导思想与组织机构443.2.3主要施工顺序453.3 施工准备工作和各项资源需要量计划453.3.1施工现场准备工作453.3.2技术准备工作463.3.3 材料、设备准备工作463.3.4 劳动力组织准备473.3.5 机械配置计划473.4 主要工程项目施工483.4.1 测量放线483.4.2 双层搅拌桩与钻孔灌注桩施工493.4.3 土方开挖523.4.4 锚杆(预应力)523.4.5 冠梁施工工艺流程图533.4.6 护坡观测方案533.5 施工进度计划533.6 临时施工用电组织计划543.7 保证安全措施553.8 保证质量措施573.8.1 质量目标573.8.2 质量要求573.8.3 质量技术措施573.9 保证工期措施573.9.1 组织管理措施573.9.2 技术措施583.9.3 机械设备措施583.10 雨季施工措施583.11 文明施工59工程费用概算61英文翻译64致谢81参考文献82本计算书CAD套图请上免费下载,按照文件名面积搜索文 献 综 述1.1 基坑含义与土方开挖在建造埋置深度较大的基础或地下工程时,往往需要进行较深的土方挖。这个由地面向下开挖的地下空间称为基坑。从地表面开挖基坑,最简单的方法是放坡开挖。这种方法既经济又方便,在空旷地区应优先用。如果由于场地的局限性,在基槽平面以外没有足够的空间安全放坡,或者为了保证基坑周围的建筑物,构筑物以及地下管线不受损坏,又或者为了满足无水条件下施工,需要设置挡土和截水的结构。这种结构称为围护结构。一般来说,围护结构应满足以下3个方面的要求;1.保证基坑周围未开挖土体的稳定,满足地下结构施工有足够空间的要求,这就要求围护结构要起挡土作用。2.保证基坑周围相邻的建筑物,构筑物和地下管线在地下结构施工期间不受损害。这就要求维护结构能起控制土体变形的作用。3.保证施工作业面在地下水位以上。这就要求维护结构有截水作用,结降水,排水等措施,将地下水位降到作业面以下。总的来说,围护结构都要满足第一和第三个要求。第二个要求要视周围建筑物,构筑物和地下管线的位置,承受变形的能力,重要性和一旦损坏可能发生的后果等方面的因素来决定。 如果维护结构部分活全部作为主体结构的一部分,譬如将支护墙做成地下室的外墙,围护结构还应满足作为主体结构一部分的要求。围护结构是临时结构,而主体结构是永久结构,两者的要求并非一致。两墙合一后,围护结构应按永久结构的要求处理,在强度,变形和抗渗能力等方面的要求都要相应提高。 维护结构是临时结构,主体结构施工完成时,围护结构即完成任务。因此,围护结构的安全储备相应较小,因而具有较大的风险。在基坑开挖过程中应对围护结构进行监测,并应预先指定应急措施,一旦出现险情,可及时抢救。 基坑工程包括了围护体系的设置和土方开挖两个方面。土方开挖的施工组织是否合理对围护体系是否成功产生重要影响。不合理的土方开挖方式,步骤和速度有可能导致主体结构桩基础变位,围护结构变形过大,甚至引起围护体系失稳而导致破坏。同时,基坑开挖必然引起周围土体中的地下水位和应力场的变化,导致周围土体的变形,对相邻建筑物,构筑物和地下管线产生不利影响。严重时有可能危机它们的安全和正常使用。 总的来说,基坑的开挖深度在基坑工程中是主导因素,基坑场地的地质条件和周围的环境决定支护方案,而基坑的开挖方式对基坑安全直接相关。1.2 基坑主要支挡方法、技术类型基坑工程中采用的围护墙、支撑(或土层锚杆)、围檩、防渗帷幕等结构体系总称为支护结构。支护结构的传统方法是钢板桩加支撑系统或钢板桩锚拉系统,其优点是材料可以回收,但拔出板桩时会引起土体的变形。目前经常采用的主要基坑支挡类型有:(1)深层搅拌水泥土挡墙(以下简称搅拌桩):将土和水泥强制搅和成水泥土桩,结硬后成为具有一定强度的整体壁状挡墙,一般用于开挖深度不超过7m的基坑,适合于软土地区,环境保护要求不高,施工低噪声、低振动,结构止水性较好,造价经济,但围护较宽,一般取基坑开挖深度的0.70.8倍。国内外试验研究和工程实践表明,搅拌桩适宜于加固淤泥、淤泥质土和含水量较高而地基承载力小于120kPa的粘土、粉质粘土、粉土等软土地基。当土中含高龄石、蒙脱石等矿物时,加固效果较好,土中含伊利石、氯化物等矿物时,加固效果较差,土的原始抗剪强度小于2030kPa时,加固效果也较差。搅拌桩用于泥炭土或土中有机质含量较高,酸碱度较低(7)及地下水有侵蚀性时,宜通过试验确定其适用性。当地表杂填土层为厚度大于100mm的石块时,一般不宜使用搅拌桩。搅拌桩的平面布置可视地质条件和基坑围护要求,结合施工设备条件,分别选用桩式、块式、壁式、格栅式或拱式,它在深度方向可采取长短结合形式。(2)钢板桩:用槽钢正反扣搭接而组成,或用U型、H型和Z型截面的锁口钢板桩。用打入法打入土中,相互连接形成钢板桩墙,既用于挡土又用于挡水,用于开挖深度310m的基坑。钢板桩具有较高的可靠性和耐久性,在完成支挡任务后,可以回收重复利用;于多道钢支撑结合,可适合软土地区的较深基坑,施工方便,工期短。但钢板桩刚度比排桩和地下连续墙小,开挖后绕度变形较大,打拔桩振动噪声大,容易引起土体移动,导致周围地基较大沉陷。 钢板桩支护结构,有永久性结构和临时性结构两类。永久性结构在海港码头中应用较多,如:码头岸墙,护墙等;临时性结构多用于高层建筑的深基础。(3)钻孔灌注桩挡墙:直径6001000mm,桩长1530m,组成排桩式挡墙,顶部浇筑钢筋混凝土圈粱,用于开挖深度为6m13m的基坑。具有噪声和振动小,刚度大,就地浇制施工,对周围环境影响小等优点。适合软弱地层使用,接头防水性差,要根据地质条件从注浆、搅拌桩等方法中选用适当方法解决防水问题,整体刚度较差,不适合兼作主体结构。桩身质量取决于施工工艺及施工技术水平,施工时需作排污处理。(4)地下连续墙:在地下成槽后,浇筑混凝土,建造具有较高强度的钢筋混凝土挡墙,用于开挖深度达10m以上的基坑或施工条件较困难的情况。具有施工噪声低,振动小,就地浇制、墙接头止水效果较好,整体刚度大,对周围环境影响小等优点。适合于软弱土层和建筑设施密集城市市区的深基坑,高质量的刚性接头的地下连续墙可作永久性结构,并可采用逆筑法施工。地下连续墙按成桩(成槽)形式的不同,划分为桩排式连续墙和壁式连续墙两大类,前一类主要用各种类型的桩,相互连接或搭接以及交错的单桩连锁组成的直线、圆弧、圆形等形式的排桩组合,具有一定的入土深度,墙顶用压顶粱连在一起,形成地下连续墙的墙体。壁式地下连续墙具有多种功能,有着广泛的应用前景。最主要用于深基坑工程的围护,特别适合于软土地区深基坑的开挖。(5)SMW工法(劲性水泥土搅拌桩):劲性水泥土搅拌桩以及水泥土搅拌桩法为基础,凡是适合应用水泥土搅拌桩的场合都可以使用劲性桩。特别是适合于以粘土和粉细砂为主的松软地层,对于含砂卵石的地层要经过适当处理后方可采用。劲性桩适宜的基坑深度与施工机械有关,国内目前一般以基坑开挖深度610m,国外尤其是日本由于施工钻孔机械先进,基坑深度达到20m以上时也采用SMW工法,劲性桩法可取得较好的环境和经济效果。劲性桩是在水泥土搅拌桩中插入受拉材料构成的,常插入H型钢。(6)土锚:用拉杆锚固支护基坑的开挖或用作抗拔桩抵抗浮托力等的应用已日益普遍。拉锚最大的优点是在基坑内部施工时,开挖土方与支撑互不干扰,尤其是在不规则的复杂施工场所,以锚杆代替挡土横撑,便于施工。这是人们乐于大量使用的主要原因。随着对锚固法的不断改进和使用可靠性的监测手段,使拉锚支护的范围更加广泛。拉锚是将一种新型受拉杆件的一端(锚固段)固定在开挖基坑的稳定地层中,另一端与工程构筑物相联结(钢板桩、挖孔桩、灌注桩以及地下连续墙等),用以承受由于土压力等施加于构筑物的推力,从而利用地层的锚固力以维持构筑物(或土层)的稳定。锚杆支护体系由挡土构筑物,腰粱及托架、锚杆三个部分所组成,以保证施工期间边坡的稳定与安全。(7)土钉墙:土钉墙支护是通过沿土钉通长与周围土体接触形成复合体。在土体发生变形的条件下,通过土钉与土体的接触界面上的粘结力或摩擦力,使土钉被动受拉,通过受拉工作面给土体约束加固,提高整体稳定性和承载能力,增强土体变形的延性。土钉墙适用于地下水位以上或人工降水后的粘性土、粉土、杂填土及非松散砂土和卵石土等。对于淤泥质土、饱和软土,应采用复合型土钉墙支护。1.3 基坑主要支撑方法、技术类型深基坑的支护体系由两部分组成,一是围护壁,二是基坑内的支撑系统。为施工需要而构筑的深基坑各类支撑系统,既要轻巧又需有足够的强度、刚度和稳定性,以保证施工的安全、经济和方便,因此支撑结构的设计是目前施工方案设计的一项十分重要的内容。在深基坑的支护结构中,常用的支撑系统按其材料分可以有钢管支撑、型钢支撑,钢筋混凝土支撑,钢和钢筋混凝土组合支撑等种类;按其受力形式分可以有单跨压杆式支撑,多跨压杆式支撑,双向多跨压杆支撑,水平桁架相结合的支撑,斜撑等类型。这些支撑系统在实践中有各自的特点和不足之处,以其材料种类分析,钢支撑便于安装和拆除,材料消耗量小,可以施加预紧力以合理控制基坑变形,钢支撑架设速度较快,有利于缩短工期。但是钢支撑系统的整体刚度较弱,由于要在两个方向上施加预紧力,所以纵横杆之间的联结始终处于铰接状态。钢筋混凝土支撑结构的整体刚度好,变形小,安全可靠,施工制作时间长于钢支撑,但拆除工作比较繁重,材料回收利用率低,钢筋混凝土支撑因其现场浇筑的可行性和高可靠度而在目前国内被广泛的使用。1.4 基坑主要止(降)水方法、技术类型工程降水是基坑工程的一个难点。由于土质和地下水位的条件不同,基坑开挖的施工方法大不相同。在地下水位以下开挖基坑时,采用降水的作用是:(1)截住基坑边坡面及基底的渗水;(2)增加边坡的稳定性,并防止基坑从边坡或基底的土粒流失;(3)减少板桩和支撑的压力,减少隧道内的空气压力;(4)改善基坑和填土的砂土特性;(5)防止基底的隆起和破坏。一个场地的地质条件和土质条件,将决定降水或排水的形式。在选择和设计基坑降水前,必须由甲方提供工程地质勘察资料,建筑物平面图和立面图,建筑物场地附近房屋平面图等,对于重大工程,设计人员除掌握相应资料外,必须在设计前到工程现场亲自了解,最好能目测各土层的土样,对将来降水工程的布置及其与邻近建筑物的影响。降低地下水位的常用方法可分为明沟降水和井点降水两类。明沟降水由于其制约条件较多,尚不能得到广泛的应用,而井点降水的适用条件较广,并经过二十多年来的应用、发展和改进,已形成了多种井点降水的方法。目前常用的井点降水方法有:轻型井点、喷射井点、电渗井点、管井点,辐射井点等。这些有效的降水方法现已被广泛用于各种降水工程中,但由于降低地下水位以后,可能带来一些不良影响,如地面沉降,邻近已有建筑物或构筑物的安全稳定及残留滞水的处理等。明沟降水是在基坑内设置排水明沟或渗渠和集水井,使进入基坑内的地下水沿排水沟渠流入井中,然后用水泵将水抽出基坑外的降水方法。明沟降水一般适用于土层较密实,坑壁较稳定,基坑较浅,降水深度不大,坑底不会产生流砂和管涌等的降水工程。在地下水位以下施工基坑工程时,通常采用井点(垂直和水平井点)降水法来降低地下水位。垂直井点常沿基坑四周外围布设,水平井点则可穿越基坑四周和底部,井点深度大于要求的降水深度,通过井点抽水或引渗来降低地下水位,实现基坑外的暗降,保证基坑工程的施工。经井点降水后,能有效地截住地下渗流,降低地下水位,克服基坑的流砂和管涌现象,防止边坡和基坑底面的破坏;减少侧土压力,增加挖掘边坡的稳定性,有利于边坡的支护和施工;防止基底隆起和破坏,加速地基土的固结作用;有利于提高工程质量,加快施工进度及保证施工安全。在城市中由于深基坑降水,总会引起地面产生一定的沉降,影响邻近建筑物和管线。最好的办法是采用止水帷幕,将坑外地下水位保持原状,仅在坑内降水。目前,采用钻孔压浆成桩法、地下连续墙、板桩、深层搅拌桩墙等止水结构形式,效果均较好。其入土深度,取决于土层的透水性,要防止出现管涌、流砂等问题。参考文献1高层建筑地下结构与基坑支护,黄熙龄主编,北京:宇航出版社,2002;2高层建筑基础工程施工,赵志缙,北京:中国建筑工业出版社,1994;3基坑工程手册,侯学渊,刘建航,北京:中国建筑工业出版社,1997;4深基坑支护工程实例集,黄强等主编,北京:中国建筑工业出版社,2001;5建筑基坑支护技术规程(JGJ20-99),1999;6深基坑工程,陈忠汉,黄书秩,程丽萍编著,北京:机械工业出版社,2002;7深基坑支护工程设计技术,黄强编著,北京:中国建筑工业出版社,1995 ;8土钉支护在深基坑工程中的应用,陈肇元等编著,北京:中国建筑工业出版社,1997;9软土地区工程地质勘察规范(JGJ83-91),1991;10深基坑施工实例,秦惠民,叶政青主编,北京:中国建筑工业出版社,1992;11深基坑支护设计与施工,余志成等编著,北京:中国建筑工业出版社,1992;12地下结构工程,龚维明等编著,南京:东南大学出版社,2004;13建筑基坑工程技术规范(YB9258-97),1997;14基础工程的降水,司徒广等编著,北京:中国建筑工业出版社,1993;15工程水文地质学,白玉兰主编,北京:中国水利水电出版社,2002;16高层建筑深基坑围护工程实践与分析,赵锡宏等,上海:同济大学出版社,1996第一章 设计方案综合说明1.1 概述1.1.1 工程概况拟建工程安徽马鞍山市xxxx(S2地块)工程位于马鞍山市xx以西,拟建桥山路以北S2地块内,总建筑面积为170000m2。场地标高在5.796.85米,地势较平坦,高差1.06米。基坑南北向长40m,东西向宽35m,开挖深度5.1m。1.1.2 场地地形、地貌及地质构造概况拟建场地位于长江中下游冲积平原(沿江平原),地貌上属长江级阶地,场地标高在5.796.85米,地势较平坦,高差1.06米。拟建场地原为农田,分布有大小不同水塘数个,水深最深达1.52.5米。周围建筑物距离基坑边线距离4.2m。马鞍山市在地质构造上属宁芜断陷盆地中段西北边缘,区内主要发育褶皱构造有燕山运动早期形成前火山岩岩系褶皱和燕山运动晚期形成的褶皱构造,轴向多呈北东3040方向,两冀倾角平缓约20左右,主要断裂构造有北东向(包括长江断裂带,慈湖-芜湖断裂)和北西向断裂构造,北东向断裂多被火山岩系和第四系覆盖,呈北东2535方向,北西向断裂构造向300330方向延伸;陡而光滑大量断层角砾,上述褶皱构造和断裂构造在断陷盆地内或棋盘格展布,为火山岩地层所充填,拟建场地位于长江断裂带东南面,据目前资料没有断层通过,仅受周围断裂影响。长江以北的郯庐大断裂和矛山断裂带近代均有活动,据地震资料 记载宁芜地区及外围,近代发生小于6级的地震甚多,1967年7月11日采石曾发生4.6级地震,按抗震规范附录A,马鞍山市地震设防烈度为六度。1.1.3 场地内各岩土层的分布、性质拟建场地内自上而下的土层有耕植土、填土、软塑可塑粉质粘土、淤泥质粉质粘土、可塑硬塑粉质粘土及坡残积层、风化层等,现详述于下: 层耕填土,呈湿、松散状态,含植物根茎,本层的岩土工程地质条件较差,不宜作为建筑物天然地基持力层。 层粉质粘土层,黄灰、灰黄色、褐夹灰色,呈湿、软塑软可塑状态,含浸染状氧化铁。无摇震反应,干强度、韧性中等偏低,稍有光泽,结构致密程度较差。广泛分布地表。 层淤泥质粉质粘土层,灰、深灰、灰黑色,呈饱和、流塑状态。 层粉质粘土层,灰、褐、褐黄、褐灰、暗绿色,呈很湿、软塑软可塑状态,偶见可塑状态。 层粉质粘土层,灰、黑灰、青灰、褐黄、褐灰色,呈湿、硬可塑硬塑状态。含浸染状氧化铁,夹灰色高岭土,底部有少量中粗砂及风化石屑。干强度、韧性较高,光泽反应切面光滑,无摇震反应,土层结构致密。1.1.4 场地地下水概况勘察场地内地下水属于上层滞水,主要接受大气降水和地表水 体补给,勘察期间由于降雨,故地下水位埋深偏高,勘探孔地下水埋深一般为0.181.1米,年变化幅度为1.01.5米,本区场地环境类型为类。根据ZK13、ZK25二孔水质分析报告,对照岩土工程勘察规范(GB50021-2001)表12.2.1、表12.2.2、和表12.2.4,本区地下水对混凝土结构无腐蚀性,在干湿交替下对钢筋混凝土结构中的钢筋和钢结构有弱腐蚀性。1.1.5 基坑侧壁安全等级及重要性系数安徽马鞍山市xx基坑安全等级为二级,基坑重要性系数0 = 1.0。1.2 设计总说明1.2.1 设计依据(1)建筑边坡工程技术规范 (GB50330-2002)(2)建筑地基基础设计规范 (GB50007-2002(3)钢结构设计规范 (GB50017-2003);(4)土木工程专业毕业设计指南,袁聚云,李境培,陈光敬编著,北京:中国水利水电出版社,2003(5)建筑基坑支护技术规程(JGJ12099)(6)建筑基坑支护,熊智彪编著,北京:中国建筑工业出版社,2008(7)混凝土设计规范(GB50010-2002)(8)基础工程,莫海鸥,杨小平编著,北京:中国建筑工业出版社,2003(9)深基坑支护工程设计技术,黄强编著,北京:中国建材工业出版社,1995(10)土层锚杆设计与施工规范(CECS 22:90)1.2.2 支护结构方案比较与选取1.土钉墙加放坡支护方案 A、土钉墙支护是通过沿土钉通长与周围土体接触形成复合体。在土体发生变形的条件下,通过土钉与土体的接触界面上的粘结力或摩擦力,使土钉被动受拉,通过受拉工作面给土体约束加固,提高整体稳定性和承载能力,增强土体变形的延性。B、土钉墙适用于地下水位以上或人工降水后的粘性土、粉土、杂填土及非松散砂土和卵石土等。对于淤泥质土、饱和软土,应采用复合型土钉墙支护。C、放坡基坑侧壁安全等级宜为三级;施工场地应满足放坡条件;可独立或与其他结构结合使用;当地下水位高于坡脚时,应采取降水措施。2、H型钢板桩加钢桁架支撑A、用打入法打入土中,相互连接形成钢板桩墙,既用于挡土又用于挡水,用于开挖深度310m的基坑。结合多道支撑,可用于较深基坑。B.H型钢板桩具有较高的可靠性和耐久性,在完成支挡任务后,可以回收重复利用;于多道钢支撑结合,可适合软土地区的较深基坑,施工方便,工期短。材料质量可靠,软土中施工速度快、简单,占面积小等优点。C.钢板桩刚度比排桩和地下连续墙小,开挖后绕度变形较大,打拔桩振动噪声大,容易引起土体移动,导致周围地基较大沉陷,需注意接头防水。D钢支撑便于安装和拆除,材料消耗量小,可以施加预紧力以合理控制基坑变形,钢支撑架设速度较快,有利于缩短工期。但是钢支撑系统的整体刚度较弱,由于要在两个方向上施加预紧力,所以纵横杆之间的联结始终处于铰接状态。E边桁架适用于范围不大的基坑,挖土方便、主体结构施工较容易。整体刚度及稳定性不好。3.钻孔灌注桩加锚杆支撑方案+单排双轴深搅桩作止水结构A、用于软土地层,开挖深度为5m11m的基坑。B、钻孔灌注桩具有噪声和振动小,刚度大,就地浇制施工,对周围环境影响小等优点。C、它施工速度慢,接头防水性差,要根据地质条件从注浆、搅拌桩等方法中选用适当方法解决防水问题,整体刚度较差,不适合兼作主体结构。D、桩身质量取决于施工工艺及施工技术水平,施工时需作排污处理E、锚杆适用于周围场地据有拉设锚杆条件的场地。锚杆的优点在于造价经济,土方开挖及主体结构施工方便。在基坑内部施工时,开挖土方与支撑互不干扰,尤其是在不规则的复杂施工场所,以锚杆代替挡土横撑,便于施工。方案对比如下表:方案优点缺点土钉墙加放坡造价经济、提高整体稳定性和承载能力环境影响较大尤其受雨水影响较大U型钢板桩加钢管支撑施工方便,工期短、速度快、简单,占面积小整体刚度及稳定性不好、打拔桩振动噪声大钻孔灌注桩加锚杆支撑噪声和振动小,刚度大、对周围环境影响小,造价经济接头防水性差、施工速度慢本基坑工程的特点是地基土层以粉质粘土为主,周围建筑物距离基坑距离4.2米,对变形要求较高,沉降要求较小,水平位移不得大于61mm。因此,围护结构的设计应满足上述要求。综合考察现场的周边环境、道路及岩土组合等条件,为尽可能避免基坑开挖对周围建筑物影响,经过细致分析、计算和方案比较,本工程支护方案选用下列形式:钻孔灌注桩加锚杆支撑方案+单排双轴深搅桩作止水结构支撑方案.本工程基坑支护设计方案的设计计算,严格按照建筑地基基础设计规范GB50007-2002,土木工程专业毕业设计指南建筑基坑支护技术规程JGJ12099,建筑地基基础设计规范GB50007-2002。采用本设计的基坑支护方案,能满足基坑土方开挖、地下室结构施工及周围环境保护对基坑支护结构的要求,符合“安全可靠,经济合理,技术可行,方便施工”的原则。 图1.基坑平面图基坑分为AB、BC、CD、AD四个计算区段,如图1所示,均采用钻孔灌注桩加单锚支撑:采用双轴深层搅拌桩止水。本基坑工程的特点是地基土层以粉质粘土为主,周围建筑物距离基坑变现距离4.2米,对变形要求较高,沉降要求较小,水平位移不得大于61mm。因此,围护结构的设计应满足上述要求。综合考察现场的周边环境、道路及岩土组合等条件,为尽可能避免基坑开挖对周围建筑物,经过细致分析、计算和方案比较,本工程支护方案选用下列形式:钻孔灌注桩加单锚支撑方案.采用深层搅拌桩止水。1.3 基坑监测基坑监测是指导正确施工、避免事故发生的必要措施,本设计制定了详细的沉降移监测方案,施工过程中将严格按照设计要求做好监测、监控工作。第二章 基坑支护结构设计计算书2.1 设计计算2.1.1 地质计算参数根据本工程岩土工程勘察资料,各土层的设计计算参数如表2-1,2-2所示:表2-1 AB.BC段土层设计计算参数:层号土类名称层厚(m)重度()粘聚力(KPa)内摩擦角(度)1杂填土1.3018.05.713.52淤泥质土5.43粘性土1.619928.0118.44粘性土6.920.545.0026.28表2-2 CD.DA段土层设计计算参数:层号土类名称层厚(m)重度()粘聚力(KPa)内摩擦角(度)1杂填土1.3018.05.713.52淤泥质土5.43粘性土1.619928.0118.44粘性土6.920.545.0026.28渗透系数为K=(3-6)10-6CM/S.2.1.2 计算区段的划分根据具体环境条件、地下结构及土层分布厚度,将该基坑划分为四个计算区段,其附加荷载及计算开挖深度如表2-3:表2-3 计算区段的划分区 段北东南西段位号ABBCCDAD地面荷载(kPa)25252525开挖深度(m) 计算方法 按照建筑基坑支护技术规范(JGJ 120-99)的要求,土压力计算采用朗肯土压力理论,矩形分布模式,一层土采用分算,其他土层采用合算,求支撑轴力是用等值梁法,对净土压力零点求力矩平衡而得。2.1.4 土压力计算主动土压力计算按下式:(如下图)主动土压力计算图(1) 对于碎石土及砂土1)当计算点位于地下水位以上时:2)当计算点地下水位以下时:式中 第层的主动土压力系数;作用于深度处的竖向应力标准值;三轴试验(当有可靠经验时可采用直接剪切试验)确定的第层土固结不排水快剪粘聚力标准值;计算点深度;计算参数,当.其中当计算点位于基坑开挖面以上时 深度以上土的加权平均天然重度。2.当计算点位于基坑开挖面以下时 开挖面以上土的加权平均天然重度3.基坑外侧地面有均布荷载时,4.为零。被动土压力按下式计算:(如下图)被动土压力计算图1.对于砂土及碎石土基坑内侧抗力标准值按下列规定计算式中指作用于基坑底面以下深度处的竖向应力标准值, 可按下式计算: 式中深度以上土的加权平均天然重度指第层土的被动土压力,用公式计算。2,对于粉土及粘性土基坑内侧水平抗力标准值宜按下式计算,2.2 AB .BC段支护结构设计计算AB.BC段支护图按照朗肯土压力计算理论作为土侧向压力设计的计算依据,即: 主动土压力系数:Kai=tg2(45-i/2) 被动土压力系数:Kpi=tg2(45+i/2)计算时,不考虑支护桩体与土体的摩擦作用,且不对主、被动土压力系数进行调整,仅作为安全储备处理。计算所得土压力系数表如表4所示:表2-4: 土压力系数表土 层KaiKpi杂填土0.6210.788淤质粘土0.7140.8451.401.18粘性土0.520.7211.921.39粘性土0.390.6212.951.612.2.1 侧向土压力计算主动土压力:一层土:上部标高 0.00m 下部标高 -1.30m水位点二层土: 上部标高 -1.30m 下部标高 -6.70m挖深处:三层土: 上部标高 -6.70m下部标高 -8.30m四层土: 上部标高 -8.30m 下部标高 -14.20m1.251.01.1Mmax(=421.74) 满足要求!配筋率r=As/A=4022/(4502p)=6.33rmin=4,满足设计要求!2.2.4 锚杆设计锚杆孔径150mm 入射角25锚杆轴向受拉承载力设计值:锚杆锚固段计算长度:锚杆自由段长度计算: =3.33m1.3满足稳定要求。2.2.6 抗倾覆稳定性验算 抗倾覆安全系数:Mp被动土压力及支点力对桩底的弯矩, 对于内支撑支点力由内支撑抗压力 决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。Ma主动土压力对桩底的弯矩;Ks = 3.2 = 1.200, 满足规范要求。2.2.7 抗隆起验算 Prandtl(普朗德尔)公式(Ks = 1.11.2),注:安全系数取自建筑基坑工程技术规范YB 9258-97(冶金部):Ks = 11.685 = 1.1, 满足规范要求。Terzaghi(太沙基)公式(Ks = 1.151.25),注:安全系数取自建筑基坑工程技术规范YB 9258-97(冶金部):Ks = 14.133 = 1.15, 满足规范要求。2.2.8 抗管涌验算 抗管涌稳定安全系数(K = 1.5):式中_0侧壁重要性系数;土的有效重度(kN/m3);w地下水重度(kN/m3);h地下水位至基坑底的距离(m);D桩(墙)入土深度(m);K = 2.878 = 1.5, 满足规范要求。2.2.9 变形验算值法进行验算;在范围内只有二层土,因此=查表得: =37.14mm61mm满足位移要求。2.3 CD .AD段支护结构设计计算DA.CD段支护图按照朗肯土压力计算理论作为土侧向压力设计的计算依据,即: 主动土压力系数:Kai=tg2(45-i/2) 被动土压力系数:Kpi=tg2(45+i/2)计算时,不考虑支护桩体与土体的摩擦作用,且不对主、被动土压力系数进行调整,仅作为安全储备处理。计算所得土压力系数表如表5所示:表2-5 土压力系数表 :土 层KaiKpi杂填土06210.788淤质粘土0.7140.8451.401.18粘性土0.520.7211.921.39粘性土0.390.6212.951.612.3.1 侧向土压力计算主动土压力:一层土:上部标高 0.00m 下部标高 -1.30m水位点二层土:上部标高 -1.30m 下部标高 -7.60m挖深处:三层土:上部标高 -7.60m下部标高 -9.20m四层土:上部标高 -9.20m 下部标高 -15.10m1.251.01.1Mmax(=421.74) 满足要求!配筋率r=As/A=4022/(4502p)=6.33rmin=4,满足设计要求!2.3.4 锚杆设计锚杆孔径150mm 入射角25锚杆轴向受拉承载力设计值:锚杆锚固段计算长度:锚杆自由段长度计算: =3.6m1.3满足稳定要求。2.3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论