




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
庚景教育第一章 三角函数 一、基础知识点总结2、角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角第一象限角的集合为第二象限角的集合为第三象限角的集合为第四象限角的集合为终边在轴上的角的集合为终边在轴上的角的集合为终边在坐标轴上的角的集合为3、与角终边相同的角的集合为4、长度等于半径长的弧所对的圆心角叫做弧度5、半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是6、弧度制与角度制的换算公式:,7、若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,Pvx y A O M T 8、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是,则,9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正10、三角函数线:,11、角三角函数的基本关系:;12、函数的诱导公式:,口诀:函数名称不变,符号看象限,口诀:正弦与余弦互换,符号看象限二 、三角函数伸缩平移变换函数 的图象与函数的图象之间可以通过变化来相互转化影响图象的形状,影响图象与轴交点的位置由引起的变换称振幅变换,由引起的变换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由引起的变换称上下平移变换,它们都是平移变换既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移变换方法如下:先平移后伸缩的图象得的图象得的图象得的图象得的图象先伸缩后平移的图象得的图象得的图象得的图象得的图象例1将的图象怎样变换得到函数的图象解:(方法一)把的图象沿轴向左平移个单位长度,得的图象;将所得图象的横坐标缩小到原来的,得的图象;将所得图象的纵坐标伸长到原来的2倍,得的图象;最后把所得图象沿轴向上平移1个单位长度得到的图象(方法二)把的图象的纵坐标伸长到原来的2倍,得的图象;将所得图象的横坐标缩小到原来的,得的图象;将所得图象沿轴向左平移个单位长度得的图象;最后把图象沿轴向上平移1个单位长度得到的图象说明:无论哪种变换都是针对字母而言的由的图象向左平移个单位长度得到的函数图象的解析式是而不是,把的图象的横坐标缩小到原来的,得到的函数图象的解析式是而不是对于复杂的变换,可引进参数求解例2将的图象怎样变换得到函数的图象分析:应先通过诱导公式化为同名三角函数解:,在中以代,有根据题意,有,得所以将的图象向左平移个单位长度可得到函数的图象练习1、要得到函数y=2cos(x+)sin(x)1的图象,只需将函数y=sin2x+cos2x的图象()A、向左平移个单位 B、向右平移个单位 C、向右平移个单位D、向左平移个单位2、将函数y=3sin(2x+)的图象F1按向量平移得到图象F2,若图象F2关于直线对称,则的一个可能取值是()A、B、 C、 D、3、将函数的图象按向量平移,得到y=f(x)的图象,则f(x)=()A、 B、C、 D、sin(2x)+34、把函数y=(cos3xsin3x)的图象适当变化就可以得到y=sin3x的图象,这个变化可以是()A、沿x轴方向向右平移 B、沿x轴方向向左平移C、沿x轴方向向右平移 D、沿x轴方向向左平移5、为了得到函数y=的图象,可以将函数y=sin2x的图象()A、向右平移个单位长度 B、向右平移个单位长度C、向左平移个单位长度 D、向左平移个单位长度6、把函数y=sinx的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),然后把图象向左平移个单位,则所得到图象对应的函数解析式为()A、 B、C、 D、1、D 2、A 3、D 4、D 5、A 6、D14、函数的性质:振幅:;周期:;频率:;相位:;初相:函数,当时,取得最小值为 ;当时,取得最大值为,则,15、正弦函数、余弦函数和正切函数的图象与性质:函数性质 图象定义域值域最值当时,;当 时,当时, ;当时,既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心对称轴对称中心对称轴对称中心无对称轴补充知识点:三角恒等变换24、两角和与差的正弦、余弦和正切公式:; (); ()25、二倍角的正弦、余弦和正切公式:升幂公式降幂公式, 第二章 平面向量16、向量:既有大小,又有方向的量 数量:只有大小,没有方向的量有向线段的三要素:起点、方向、长度 零向量:长度为的向量单位向量:长度等于个单位的向量平行向量(共线向量):方向相同或相反的非零向量零向量与任一向量平行相等向量:长度相等且方向相同的向量17、向量加法运算:三角形法则的特点:首尾相连平行四边形法则的特点:共起点三角形不等式: 运算性质:交换律:;结合律:;坐标运算:设,则18、向量减法运算:三角形法则的特点:共起点,连终点,方向指向被减向量坐标运算:设,则设、两点的坐标分别为,则19、向量数乘运算:实数与向量的积是一个向量的运算叫做向量的数乘,记作;当时,的方向与的方向相同;当时,的方向与的方向相反;当时,运算律:;坐标运算:设,则20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使设,其中,则当且仅当时,向量、共线21、平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使(不共线的向量、作为这一平面内所有向量的一组基底)22、分点坐标公式:设点是线段上的一点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度浙江省二级造价工程师之建设工程造价管理基础知识能力提升试卷B卷附答案
- 幼儿园蒙氏培训
- 车间员工的工作态度培训
- DB43-T 2860-2023 蕙兰设施栽培技术规程
- 肿瘤外科胃癌护理查房
- 常见人格障碍病人的护理
- 北师大版数学五年级下册期末情境卷试题(B)卷(含解析)
- 幼儿园小班社会教案我们一起玩
- 地质集团面试题及答案
- 初级统计考试题及答案
- 湖北省部分学校2023-2024学年高二下学期期末考试地理试题
- 基于大数据的公路运输碳排放评估与控制
- 叙事护理学智慧树知到期末考试答案章节答案2024年中国人民解放军海军军医大学
- 工业机器人系统操作员国家职业技能考核标准(2023年版)
- 上海学前教育学院附属青浦第二实验幼儿园新生入园登记
- 卡前列素氨丁三醇在产后出血的的应用课件
- 固废危废培训课件
- 水库安保服务方案
- 一例ANCA相关性血管炎患者的护理查房
- 《外科微创技术》课件
- 如何建立与客户良好的关系
评论
0/150
提交评论