




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章 R软件的使用1. 求解非线性方程组一般用Newton法。Newton法的迭代格式为:其中J(x)为函数f(x)的Jacobi矩阵。请补全下列程序:Newtons = function (fun, x, ep=1e-5, it_max=100) index = 0; k = 1 while (k=it_max) x1 = x; obj = fun(x); x = x - _ (obj$J, obj$f); norm = sqrt(x-x1) %*% (x-x1) if (normep) index = 1; _ k = k+1 obj = fun(x); list(root=_, it=_, index=index, FunVal= _)funs = function(x) f = c(x12+x22-5, (x1+1)*x2-(3*x1+1) J = matrix(c(2*x1, 2*x2, x2-3, x1+1), nrow=2, byrow=T) list(f=f, J=J)2. 编写一个R程序(函数).输入一个整数n,如果,则中止运算,并输出一句话:“要求输入一个正整数”; 否则,如果n是偶数,则将n除以2,并赋给n;否则,将3 n + 1赋给n.不断循环,只到n = 1,才停止计算,并输出一句话:“运算成功”.这个例子是为了检验数论中的一个简单的定理. 请补全下列程序:fn = function(n) if(n0) _ else if (P x = c(0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.20, 0.21, 0.23) y = c(42.0, 43.5, 45.0, 45.5, 45.0, 47.5, 49.0, 53.0, 50.0, 55.0, 55.0, 60.0) lm.sol = lm(y 1+x) summary(lm.sol)Call:lm(formula = y 1 + x)Residuals:Min 1Q Median 3Q Max-2.0431 -0.7056 0.1694 0.6633 2.2653Coefficients:Estimate Std. Error t value Pr(|t|)(Intercept) _ _ _ 5.88e-09 *x 130.835 9.683 13.51 9.50e-08 *-Signif. codes: 0 * 0.001 * 0.01 * 0.05 . 0.1 1Residual standard error: _ on 10 degrees of freedomMultiple R-Squared: _, Adjusted R-squared: 0.9429F-statistic: 182.6 on 1 and 10 DF, p-value: 9.505e-08第七章 方差分析14请补全单因素方差分析表。因素A r-1 MSA=_ F=_ p误差 n-r MSE=_总和 _ _第八章 应用多元分析(I)1. 请补全以下程序。discriminiant.distance = function (TrnX1, TrnX2, _ = NULL, var.equal = FALSE) if (is.null(TstX) = = TRUE) TstX = rbind(TrnX1,TrnX2) if (is.vector(TstX) = = TRUE) TstX = _ else if (is.matrix(TstX) != TRUE) TstX = as.matrix(TstX) if (is.matrix(TrnX1) != TRUE) TrnX1 = as.matrix(TrnX1) if (is.matrix(TrnX2) != TRUE) TrnX2 = as.matrix(TrnX2) nx = nrow(TstX) blong = matrix(rep(0, nx), nrow=1, byrow=TRUE, dimnames=list(blong, 1:nx) mu1 = colMeans(TrnX1); mu2 = colMeans(TrnX2) if (_) S = _ (rbind(TrnX1,TrnX2) w = mahalanobis(TstX, mu2, S)-mahalanobis(TstX, mu1, S) else S1 = var(TrnX1); S2 = var(TrnX2) w = mahalanobis(TstX, mu2, S2)-mahalanobis(TstX, mu1, S1) for (i in 1:nx) if (wi0) blongi = 1 else blongi = 2 _2. 请补全以下程序。distinguish.distance = function (TrnX, _, TstX = NULL, var.equal = FALSE) if (_ = FALSE) mx = nrow(TrnX); mg = nrow(TrnG) TrnX = rbind(TrnX, TrnG) TrnG = factor(rep(1:2, c(mx, mg) if (is.null(TstX) = = TRUE) TstX = TrnX if (is.vector(TstX) = = TRUE) TstX = t(as.matrix(TstX) else if (is.matrix(TstX) != TRUE) TstX = as.matrix(TstX) if (is.matrix(TrnX) != TRUE) TrnX = as.matrix(TrnX) nx = nrow(TstX) blong = matrix(rep(0, nx), nrow=1, dimnames=list(blong, 1:nx) g = length(levels(TrnG) mu = matrix(0, nrow=g, ncol=ncol(TrnX) for (i in 1:g) mui, = colMeans(TrnXTrnG= =i,) D = matrix(0, nrow=g, ncol=nx) if (_) for (i in 1:g) Di, = _ else for (i in 1:g) Di, = mahalanobis(TstX, mui, var(TrnXTrnG= =i,) for (j in 1:nx) _ for (i in 1:g) if (Di,jdmin) dmin = Di,j; blongj = i blong3. 请补全以下程序。discriminiant.bayes = function (TrnX1, TrnX2, _, TstX = NULL, var.equal = FALSE) if (is.null(TstX) = = TRUE) TstX = rbind(TrnX1,TrnX2) if (is.vector(TstX) = = TRUE) TstX = t(as.matrix(TstX) else if (is.matrix(TstX) != TRUE) TstX = as.matrix(TstX) if (is.matrix(TrnX1) != TRUE) TrnX1 = as.matrix(TrnX1) if (is.matrix(TrnX2) != TRUE) TrnX2 = as.matrix(TrnX2) nx = nrow(TstX) blong = matrix(rep(0, nx), nrow=1, byrow=TRUE, dimnames=list(blong, 1:nx) mu1 = colMeans(TrnX1); mu2 = colMeans(TrnX2) if (_) S = var(rbind(TrnX1,TrnX2); beta = _ w = _ else S1 = var(TrnX1); S2 = var(TrnX2) beta = 2*log(rate)+log(det(S1)/det(S2) w = mahalanobis(TstX, mu2, S2)-mahalanobis(TstX, mu1, S1) for (i in 1:nx) if (_) blongi = 1 else blongi = 2 blong第九章 应用多元分析(II)4. 下面是主成分法的R程序,请补全它。factor.analy1 = function(S, m) p = nrow(S); diag_S = diag(S); sum_rank = sum(diag_S) rowname = paste(X, 1:p, sep=) colname = paste(Factor, 1:m, sep=) A = matrix(0, nrow=p, ncol=m, dimnames=list(rowname, colname) eig = _ for (i in 1:m) A,i = _*eig$vectors,i h = diag(_) rowname = c(SS loadings, Proportion Var, Cumulative Var) B = matrix(0, nrow=3, ncol=m, dimnames=list(rowname, colname) for (i in 1:m) B1,i = _ B2,i = B1,i/sum_rank B3,i = sum(B1,1:i)/sum_rank method = c(Principal Component Method) list(method=method, loadings=A, var=_(common=h, spcific=diag_S-h), B=B) 5. 下面是主因子法的R程序,请补全它。factor.analy2 = function(_) p = nrow(R); diag_R = diag(R); sum_rank = sum(diag_R) rowname = paste(X, 1:p, sep=) colname = paste(Factor, 1:m, sep=) A = matrix(0, nrow=p, ncol=m, dimnames=list(rowname, colname) kmax=20; k = 1; h = _ _ diag(R) = h; h1 = h; eig = eigen(R) for (i in 1:m) A,i = sqrt(eig$valuesi)*eig$vectors,i h = diag(A %*% t(A) if (_0.70) m = i; break source(factor.analy1.R) source(factor.analy2.R) source(factor.analy3.R) _ (method, princomp=factor.analy1(S, m), factor=factor.analy2(S, m, d), likelihood=factor.analy3(S, m, d) ) 程序填空题题库答案第二章 R软件的使用1. 求解非线性方程组一般用Newton法。Newton法的迭代格式为:其中J(x)为函数f(x)的Jacobi矩阵。请补全下列程序:Newtons = function (fun, x, ep=1e-5, it_max=100) index = 0; k = 1 while (k=it_max) x1 = x; obj = fun(x); x = x - solve(obj$J, obj$f); norm = sqrt(x-x1) %*% (x-x1) if (normep) index = 1; break k = k+1 obj = fun(x); list(root=x, it=k, index=index, FunVal= obj$f)2. 编写一个R程序(函数).输入一个整数n,如果,则中止运算,并输出一句话:“要求输入一个正整数”; 否则,如果n是偶数,则将n除以2,并赋给n;否则,将3 n + 1赋给n.不断循环,只到n = 1,才停止计算,并输出一句话:“运算成功”.这个例子是为了检验数论中的一个简单的定理. 请补全下列程序:fn = function(n) if(n0) n = (3*n+1) if(n=1) breaki=i+1 list(result=运算成功, n=n, iter=i) 第三章 数据描述性分析3. data_outline.R计算样本的各种描述性统计量。请补全该程序。data_outline = function(x) n = length(x) m = mean(x) v = var(x) s = sd(x) me = median(x) cv = 100*s/m css = sum(x-m)2) uss = sum(x2) R = max(x)-min(x) R1 = quantile(x,3/4)-quantile(x,1/4) sm = s/sqrt(n) g1 = n/(n-1)*(n-2)*sum(x-m)3)/s3 g2 = (n*(n+1)/(n-1)*(n-2)*(n-3)*sum(x-m)4)/s4 - (3*(n-1)2)/(n-2)*(n-3) data.frame(N=n, Mean=m, Var=v, std_dev=s, Median=me, std_mean=sm, CV=cv, CSS=css, USS=uss, R=R, R1=R1, Skewness=g1, Kurtosis=g2, s=1)第四章 参数估计4. 请写出正态均值、方差区间估计及假设检验,非正态均值区间估计的函数名(共23个程序)正态均值区间估计及假设检验单总两总Sigma已知Sigma未知Sigma1, sigma2已知Sigma1, sigma2未知=Sigma1, sigma2未知!=区间估计interval_estimate1(双)interval_estimate2(双)interval_estimate4(单、双)interval_estimate5(单、双)t.test(单、双)Xt.test(单、双、成对)X假设检验mean.test1mean.test2interval_estimate4(区)interval_estimate5(区)t.test(区)Xt.test(区、成对)X正态方差区间估计及假设检验单总两总Mu已知Mu未知mu1, mu2已知mu1, mu2未知区间估计interval_var1(双)interval_var2(双)interval_var3(单、双)interval_var4 (单、双)var.test(单、双)X假设检验var.test1var.test2interval_var3(区)interval_var4(区)var.test(区)X非正态均值区间估计:interval_estimate3(双)5. 单个正态总体均值的区间估计函数是interval_estimate1.R, 请补全此程序。interval_estimate1 = function(x, sigma=-1, alpha=0.05) n = length(x); xb = mean(x) if (sigma=0) tmp = sigma/sqrt(n)*qnorm(1-alpha/2); df = n else tmp = sd(x)/sqrt(n)*qt(1-alpha/2,n-1); df = n-1 data.frame(mean=xb, df=df, a=xb-tmp, b=xb+tmp)6. 单个正态总体方差的区间估计函数是interval_var1.R, 请补全此程序。interval_var1 = function(x, mu=Inf, alpha=0.05) n = length(x) if (muInf) S2 = sum(x-mu)2)/n; df = n else S2 = var(x); df = n-1 a = df*S2/qchisq(1-alpha/2,df) b = df*S2/qchisq(alpha/2,df) data.frame(var=S2, df=df, a=a, b=b)第五章 假设检验7. P_value.R为求P值的R程序,请补全它。P_value = function(cdf, x, paramet=numeric(0), side=0) n = length(paramet) P = switch(n+1, cdf(x), cdf(x, paramet), cdf(x, paramet1, paramet2), cdf(x, paramet1, paramet2, paramet3) ) if (side0) 1-P else if (P=0) z = (xb-mu)/(sigma/sqrt(n) P = P_value(pnorm, z, side=side) data.frame(mean=xb, df=n, Z=z, P_value=P) else t = (xb-mu)/(sd(x)/sqrt(n) P = P_value(pt, t, paramet=n-1, side=side) data.frame(mean=xb, df=n-1, T=t, P_value=P) 9. var.test1.R是求单个正态总体方差检验的R程序,请补全它。var.test1 = function(x, sigma2=1, mu=Inf, side=0) source(P_value.R) n = length(x) if (mu x = c(0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.20, 0.21, 0.23) y = c(42.0, 43.5, 45.0, 45.5, 45.0, 47.5, 49.0, 53.0, 50.0, 55.0, 55.0, 60.0) lm.sol = lm(y 1+x) summary(lm.sol)Call:lm(formula = y 1 + x)Residuals:Min 1Q Median 3Q Max-2.0431 -0.7056 0.1694 0.6633 2.2653Coefficients:Estimate Std. Error t value Pr(|t|)(Intercept) 5.88e-09 *x 130.835 9.683 13.51 9.50e-08 *-Signif. codes: 0 * 0.001 * 0.01 * 0.05 . 0.1 1Residual standard error: on 10 degrees of freedomMultiple R-Squared: , Adjusted R-squared: 0.9429F-statistic: 182.6 on 1 and 10 DF, p-value: 9.505e-08第七章 方差分析11. 请补全单因素方差分析表。因素A r-1 MSA= F= p误差 n-r MSE=总和 n-1 第八章 应用多元分析(I)12. 请补全以下程序。discriminiant.distance = function (TrnX1, TrnX2, TstX = NULL, var.equal = FALSE) if (is.null(TstX) = = TRUE) TstX = rbind(TrnX1,TrnX2) if (is.vector(TstX) = = TRUE) TstX = t(as.matrix(TstX) else if (is.matrix(TstX) != TRUE) TstX = as.matrix(TstX) if (is.matrix(TrnX1) != TRUE) TrnX1 = as.matrix(TrnX1) if (is.matrix(TrnX2) != TRUE) TrnX2 = as.matrix(TrnX2) nx = nrow(TstX) blong = matrix(rep(0, nx), nrow=1, byrow=TRUE, dimnames=list(blong, 1:nx) mu1 = colMeans(TrnX1); mu2 = colMeans(TrnX2) if (var.equal = = TRUE) S = var(rbind(TrnX1,TrnX2) w = mahalanobis(TstX, mu2, S)-mahalanobis(TstX, mu1, S) else S1 = var(TrnX1); S2 = var(TrnX2) w = mahalanobis(TstX, mu2, S2)-mahalanobis(TstX, mu1, S1) for (i in 1:nx) if (wi0) blongi = 1 else blongi = 2 blong13. 请补全以下程序。distinguish.distance = function (TrnX, TrnG, TstX = NULL, var.equal = FALSE) if ( is.factor(TrnG) = FALSE) mx = nrow(TrnX); mg = nrow(TrnG) TrnX = rbind(TrnX, TrnG) TrnG = factor(rep(1:2, c(mx, mg) if (is.null(TstX) = = TRUE) TstX = TrnX if (is.vector(TstX) = = TRUE) TstX = t(as.matrix(TstX) else if (is.matrix(TstX) != TRUE) TstX = as.matrix(Tst
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- FGFR-IN-22-生命科学试剂-MCE
- 新疆维吾尔自治区公考真题2025
- 工业安全培训基地课件
- 农发行北京市密云区2025秋招笔试热点题型专练及答案
- 农发行七台河市桃山区2025秋招笔试价值观测评题专练及答案
- 地热能供暖与智慧城市能源系统融合2025年技术变革报告
- 农发行绥化市绥棱县2025秋招笔试性格测试题专练及答案
- 新能源行业2025年:技术创新与环保责任战略布局
- 平移课件太平洋
- 海洋能发电技术创新政策支持与海洋经济转型升级报告
- 宜宾党校考试试题及答案
- 关于数据安全管理制度
- 华中师范大学第─附属中学2025届高三下五月高考模拟英语试卷
- 小儿烧伤的护理
- 2025年牛羊肉市场分析报告
- 《民营经济促进法》解读与案例分析课件
- DB31T 444-2022 排水管道电视和声呐检测评估技术规程
- 《技术分析核心精要》课件
- 化工安装验收报告
- 爆破钻孔合同协议
- 2024年宁波市北仑区招聘事业单位人员笔试真题
评论
0/150
提交评论