炼钢连铸200问g.doc_第1页
炼钢连铸200问g.doc_第2页
炼钢连铸200问g.doc_第3页
炼钢连铸200问g.doc_第4页
炼钢连铸200问g.doc_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

连续铸钢基础知识200问第一部分 高效连铸技术1 什么是高效连铸?高效连铸通常定义为五高:即整个连铸坯生产过程是高拉速、高质量、高效率、高作业率、高温铸坯。随着市场经济的深入发展,应当添加高经济效益(大幅度降成本)这一项最直接的指标;另外,高自动控制也提到日程上来了。目前,国内的方坯高效连铸以150方为例,应在单流年产15万吨20万吨/年、流合格普碳钢铸坯的水平。板坯应在100150万吨/年、流合格铸坯的水平了,其铸坯每吨的成本也在逐年降低。连铸机的全程自动控制水平也在逐年提高。2 高效连铸技术包括的主要内容是什么?高效连铸技术是一项系统的整体技术,实现高效连铸需要工艺、设备、生产组织和管理、物流管理、生产操作以及与之配套的炼钢车间各个环节的协调与统一。主要技术内容如下:(1)、保证适宜的钢水温度,最佳的钢水成分,并保证其稳定性的连铸相关配套技术。(2)、供应清洁的钢水和良好流动性钢水的连铸相关技术。(3)、连铸的关键技术高冷却强度的导热均匀的长寿结晶器总成(包括结晶器整体结构、精密水套、导热均匀的曲面铜管等等)。(4)、高精度、长寿的结晶器振动装置是高效连铸关键技术之一,这其中包括振动装置硬件的优化及结晶器振动形式、振动工艺参数的软件优化。以往高效连铸采用的半板簧、全板簧及高频小频振幅正弦波形起到了一定的正面效果。目前,中冶连铸研制的新型串接式全板簧振动装置,其精度更高,整体刚度增强,寿命长,对促进高效连铸进一步发展将起到重要作用。该装置可采用液压传动或机械传动,液压传动可增加正滑脱时间,提高保护渣用量,减小上振速度峰值,降低拉坯阻力,降低负滑脱时间,使振痕深度相应减小。机械传动可以降低成本,更易于推广使用。(5)保护渣技术众所周知,保护渣与拉速相匹配,拉速提高后,保护渣粘度等指标要相应改进,保证用量不减或在允许范围内减少,以保证铸坯的高质量。因此,连铸高效化后必须有低粘度、低熔点、高溶化速度、大凝固系数的保护渣。保护渣技术是连铸高效化的一项关键技术。(6)结晶器钢水液面控制技术拉速越高,结晶器液面波动越大。液面波动大易产生卷渣及夹杂物造成铸坯缺陷,因此液面稳定越来越变得重要了。目前国内自动控制液面技术趋于成熟,可使液面稳定在35mm。该技术对高效连铸也是不可缺少的。(7)二次冷却的硬件及软件技术这也是高效连铸中关键技术之一,其硬件要求尽量做到冷却均匀(无障碍喷淋)且可方便调节。目前由于市场对合金钢、品种钢及普碳钢质量的高标准要求,新建连铸机趋向于增大半径,板坯趋向于弧形改造为直弯形连铸机,其目的就是使从结晶器到二冷形成全方位的铸坯对称凝固或接近对称凝固过程,以此获得高质量铸坯。近年来板、方坯连铸机二冷动态自动控制喷水冷却有了较快发展,软件的发展更具实用性、适用性,对各种钢种、不同拉速、不同温度变化都可及时调整水量,以生产高质量铸坯。(8)连续矫直技术根据铸坯带液芯矫直机理,选择三次抛物线做为连铸机弧形段和直线段的连续矫直曲线,在高效连铸中起到了良好效果。目前又已倾向于采用轻压下技术,以减小偏析、缩孔,提高铸坯质量。在小方坯中采用热压缩技术,以代替轻压下,也取得满意效果。(9)其它技术:铸坯支撑及强化冷却技术、保护浇注技术、钢包技术、中间包技术、电磁搅拌技术、自动开浇技术、低温浇注技术等。3 高效连铸对钢水有哪些要求?高效连铸与普通连铸相比对钢水的要求更加严格。主要体现在几个方面:(1)温度:与常规连铸相比,高效连铸钢水在结晶器内停留时间缩短1/31/4,为获得同样厚度的坯壳,除了进一步强化结晶器冷却能力外,保证低温钢液是必须的浇注条件。高的钢水温度还会加剧二次氧化及对包衬的腐蚀。过低的温度也会引起质量缺陷。低温浇注并严格控制温度是实现高效连铸的前提。(2)化学成分:高效连铸要求严格控制钢水的化学成分。如多炉连浇,各炉间含碳量的差别要求小于0.02%,Mn/S比、S、P含量要求严格控制在要求的范围内。(3)洁净度:随着市场对钢质量的要求越来越高,对钢的洁净度提出了更高的要求。如韩国浦项深冲钢磷、硫、氧、氮、氢五大元素总含量已降至0.008%。钢水洁净度不仅体现在冶炼方面,洁净浇注即浇注过程中的钢水保护也是实现高效连铸的重要保证。4 高效连铸机有哪些结构特征?高效连铸同传统连铸相比,其特点是高拉速、高质量、高效率、高作业率、高温铸坯。高效连铸机为了适应高效连铸的要求,具有如下结构特征:(1)高效连铸首先要有适合生产连铸坯钢种及生产大纲的最佳机型,即冶炼设备和铸机的装备水平要与实现高效连铸的钢种相匹配。(2)拉速的提高使得连铸机向着增大弧形半径和立弯式机型的方向发展。(3)主体设备要求长寿命,低故障率,可靠,并能实现快速更换,事故快速处理。(4)自动化水平高。高效连铸机实现自动化生产。5 什么是洁净钢连铸?相关的工艺措施是什么?高质量连铸坯的生产要求钢水夹杂物的含量控制在规定的范围内。在连铸的炼钢精炼连铸工艺过程中,炼钢和精炼是保证钢水洁净的基础。同模铸相比,由于连铸的特殊条件,炼钢和精炼后的洁净钢水获得夹杂物含量极低的洁净铸坯比模铸存在更大的困难。如何保证钢水的洁净,获得洁净铸坯,这就是洁净钢连铸技术。洁净钢连铸相关的工艺措施是:(1) 无氧化保护浇注:连铸浇注时间长,钢液暴露于空气中的面积大,从而大大增加了钢液二次氧化的可能性。无氧化保护浇注技术包括五个方面的内容。大包内钢水的保护;大包至中间罐钢水的保护;中间罐内钢水的保护;中间罐至结晶器钢水的保护;结晶器内钢水的保护。其中大包、中间罐和结晶器内钢水的保护分别采用钢水覆盖剂和结晶器保护渣,大包至中间罐钢流使用保护套管法、高压厢法或气幕法,中间罐至结晶器钢流采用浸入式水口进行保护浇注。(2) 中间罐夹杂物分离技术:在中间罐内设置各种形式的挡渣墙、坝,设过滤网等使夹杂物上浮分离、过滤。6 炉外精炼对连铸的作用是什么?炉外精炼可使连铸钢水温度和化学成分均匀化,根据需要调整钢水温度,调整钢水成分,去除有害元素,降低钢水中的含气量,改变钢中夹杂物形态和组成,洁净钢水,尤其是保证大型夹杂物不超标,改善钢水流动性。炉外精炼设备还可以起到协调连铸与炼钢之间生产节奏的作用,使生产流畅顺行。7 为什么高效连铸特别强调要保证浇注钢水温度?适宜的钢水温度(不同的钢种有不同的温度要求)可使高效连铸生产获得高质量的铸坯,而钢水过热度提高,钢坯坯壳减薄,钢水易于二次氧化,夹杂物增多,耐材严重冲蚀,易出现鼓肚、漏钢、柱状晶发达、中心偏析严重、缩孔严重等一系列问题。高效连铸的生产实践和理论都得出了相同得结论,即低温浇注是提高拉速及改善铸坯质量的重要手段之一。当然,温度低要有界限,温度过低会出现钢水流动性差,水口冻结,夹杂物难以上浮等问题。所以高效连铸特别强调要保证浇注钢水温度,即钢水浇注温度均匀稳定地保证在规定的范围内。8 高效连铸机的钢包支撑装置有何特点?高效连铸机的钢包支撑无论是回转台还是三包位行走小车,都应该做到换包快捷,易于上水口,易于阻挡下渣,最好能配有耐用的动态称重装置,以适合多炉连浇、保护浇铸等高效连铸的基本要求。9 高效连铸机对中间包的要求是什么?高效连铸机对中间包的要求是:(1) 中间包容量大,钢水液面深度要保证足够的夹杂物上浮时间。目前,年产60万吨的4机4流高效方坯连铸机中间包容量可达25吨、液面溢流标高900mm。(2) 中间包要有最佳温度场及热流分布(通过内腔形状,坝、挡墙等方法获取),以达到各水口之间的温度尽可能的均匀,即外侧水口与内侧水口温度差在3为好。(3) 高效连铸由于连浇炉数高,要求中间包外壳体及底部不变形,炉衬经久耐用,最好是整体喷涂。耐材不易腐蚀脱落污染钢水,尤其水口要经久耐用,最好配置水口快速更换装置。10 高效连铸机对中间包车的要求是什么?高效连铸机作业率高,因此要求中间包车的事故率要低。中间包车的升降系统要可靠耐用,升降平稳,以适应保护浇铸的要求。称重装置尤其应可靠,使用寿命长,保证监控中间包液面高度,使中间包液面稳定,波动小,满足高效连铸的需要。中间包车的横向移动要平稳精确,保证水口与结晶器的准确对位。目前小方坯上多采用高低腿门式中间包车,这种中间包车易于操作,采用液压驱动,更快捷,平稳。11 什么是中间包冶金?中间包冶金对高效连铸有何影响?中间包冶金的概念包括:(1) 净化、洁净钢水的功能。通过合理设置挡渣墙、向中间包底部吹气、使用过滤器等方法有效地使钢水中的夹杂物上浮分离,提高钢水的洁净度。(2) 调节钢水温度,均匀钢水温度。采用中间包加热技术,可以保持最佳过热度浇铸,提高铸坯质量。(3) 中间包内可以进行吹氩、喂丝、加热,起到微调成分,调节温度等冶金功能。中间包冶金对高效连铸是极其重要的过程。在高拉速条件下,中间包冶金在保证钢水的洁净度,钢水温度的均匀性和稳定性,提供最佳成分及其稳定性方面起到了重要作用。中间包冶金是生产高质量铸坯的重要保障。12 为什么要采用中间包加热技术?常用的有哪些加热技术?采用中间包加热可保持最佳过热度浇铸、补充合金微调所需热量。常用的加热技术有:等离子体加热,电感应加热,电渣加热,陶瓷电阻加热等。13 高效连铸为什么要合理设计中间包,改善钢水在中间包内的流动状态?高效连铸拉速高,铸坯质量要求高,因此要求中间包钢水液面要平稳,不允许形成表面波(尤其是开浇、浇注末期),不允许钢包注流区形成紊流,以防止卷渣。中间包水口区如果形成附加环流或旋流,钢水会卷入空气或渣子,加重钢水的二次氧化或将渣子卷入钢水,这是不允许的。高效连铸要求中间包内各部分温度尽可能均匀,特别是各水口的温度差近可能小。因此,高效连铸要求合理设计中间包。在中间包设计之前,必须经过理论计算、实验室内水模试验或低熔点介质流动模型试验,取得相应的数据经转换后做为中间包设计的技术参数。14 高效连铸机结晶器设计的主要特点是什么?高效连铸机结晶器设计的原则是:(1) 保证高效率的热传导功能,即冷却强度大,冷却效率高,使铸坯在结晶器内结壳达到足够的厚度。(2) 结晶器的热流强度均匀。热流强度均匀使铸坯坯壳均匀。(3) 拉坯阻力小。(4) 结晶器,特别是铜管寿命长。目前方坯结晶器主要采用抛物线铜管、精致铜水套技术。结晶器铜管的内腔形状应尽可能与坯壳的凝固特性曲线相吻合,水套应保证足够的尺寸精度,以保证水缝的均匀性。高效连铸机结晶器一般都配有电磁搅拌和液面检测装置。15 什么叫反向振频振动模式?有什么效果?这种振动模式是随着拉速的提高,振幅增加而频率下降;负滑脱时间保持相对恒定,而正滑脱时间增加,满足了高拉速状态下需要增加保护渣用量的工艺要求,同时拉坯阻力减小,达到了铸坯表面振痕小的冶金效果。16 方坯连铸机高效化后结晶器的特征?目前使用的方坯连铸机结晶器主要有喷淋结晶器和水缝结晶器两种。喷淋结晶器由于对冷却水水质要求认识上的差距以及生产维护问题,出现喷嘴堵塞及结垢后,引起冷却不均匀产生漏钢等问题,方坯高效连铸有普遍使用窄水缝结晶器的趋势。方坯连铸机高效化后结晶器有如下特征:(1)结晶器普遍采用多锥度或抛物线锥度。(2)结晶器横端面截面形状采用凹型或凸型。(3)对“气隙”的作用给予了足够的重视,采用改变锥度、截面形状,水压等方法减少“气隙”的影响。(4)采用窄水缝技术。(5)冷却水压力提高,流速达10m/s以上。(5)提高结晶器铜管和水套的制造精度,保证水缝的均匀性。17 什么是抛物线形结晶器?通过计算,结晶器内各部分热阻在总热阻中所占百分比如下:坯壳 26%气隙 71%铜管壁 1%气隙热阻占系统总热阻70%以上,可见气隙对热交换,对结晶器内钢水凝固起决定性作用。研究发现;影响气隙的主要因素为小方坯本身的收缩和结晶器铜管变形。对于小方坯本身的收缩,根据铸坯凝固规律,坯壳厚度的增长与凝固时间的平方根成正比,为了适应坯壳的这种收缩特性,需要把结晶器锥度设计成抛物线形式。结晶器变形主要包括两种变形:一种是结晶器铜管壁加热不均匀引起不同的热膨胀,即热变形;另一种为铜管在结晶器内的约束形式及结晶器本身的几何轮廓产生的变形。两种变形导致铜管产生的应力能使其产生屈服和永久变形,尤其在弯月面附近,因为这里温度梯度最大,另外由于此区域温度最高会使屈服应力局部降低。因此,在确定结晶器最终锥度时,应考虑这两个主要因素对气隙的影响。另外,低碳钢需要的锥度小于高碳钢需要的锥度,在设计结晶器锥度时应引起注意。锥度公式如下:d=ft(z)dz式中:d总收缩尺寸,mmf铸坯断面尺寸,mmt(z)连续变动锥度,%/mz结晶器纵坐标,m根据铜管热变形和小方坯收缩确定的结晶器抛物线锥度,能大大提高凝壳在结晶器整个长度上的接触性,使坯壳均匀,充分地生长。但为了使生产过程易于控制,必须考虑所选择的锥度要适应国内较宽的浇铸速度范围,尤其在低拉速或换包时,以使铜管具有很长寿命。18 什么是“凸形”结晶器?“凸形”结晶器是康卡斯特公司推出的一种高效方坯结晶器技术,又名Convex结晶器。它的基本特征是;结晶器上部内腔铜壁面向外凸出,而不是平的,即上口内园角大于90;往下沿整个结晶器长度方向上逐渐变为平面,即到铜管出口处内园角又恢复到90角。康卡斯特公司认为:上部凸面区传热效率高,角部气隙小,能使坯壳与结晶器尽量可能保持良好接触;坯壳向下运行时,逐渐冷却收缩并自然过渡到平面段。结晶器下部壁面呈平面正好适应了坯壳本身的自然收缩,使结晶器传热效率大为改善。19 什么是自适应结晶器?自适应结晶器是达涅利(Danieli)公司开发的一种高效方坯结晶器,又称Danam结晶器。其具体做法如下:采用薄型铜管,加大并调节结晶器冷却水压,使薄铜壁紧粘坯壳以消除气隙,实现高拉速。在Danam结晶器里,通过调节水压,使其上部对铸坯侧面和角部采取不同的横向冷却,来控制气隙的形成,确保坯壳均匀凝固。20 什么是“钻石”结晶器?“钻石”结晶器是VAI公司推出一种高效方坯结晶器,又称DIAMOND。VAI采用的技术解决办法如下:VAI认为提高拉速,坯壳在结晶器内生长的均匀性和增加坯壳厚度很重要,解决结晶器内坯壳生长均匀性问题,其本质就是如何降低结晶器内气隙热阻。VAI采用比常规抛物线锥度大一些的新抛物线形锥度,提高整个结晶器长度上坯壳与结晶器的接触性,方便坯壳在结晶器内均匀生长。增加坯壳厚度的最有效办法是延长结晶器长度,增加结晶器中铸坯质点在结晶器内的生长时间。VAI经过计算,认为把铜管延长至1000mm长较好。采用过大的抛物线锥度和延长铜管至1000mm后,会使结晶下部摩擦力增加很大,不利于拉坯。VAI通过研究,发现摩擦力过分增大的压力峰值出现在结晶器下部四角边沿区域。为了减小摩擦力,VAI采用从距结晶器顶部300400mm处开始,一直到下口为止结晶器角部区域没有锥度,而且愈往下,角部无锥度区域也增大。这种方法既确保了结晶器内坯壳的均匀生长,又有效防止了结晶器中尤其下部摩擦力的过分增大。VAI认为由于结晶器角部区域为二维热传递,因此在这个区域中小方坯角部区域的直接接触没有绝对必要,因为这个区域中的坯壳总能充分生长。21 什么是压力水膜结晶器?压力水膜结晶器是比利时冶金研究中心(CRM)和阿贝德厂(Arbed)联合开发的一种高效结晶器技术。具体做法如下:在结晶器下口固定有四块钢板,水从每块钢板上加工的狭缝喷射出来,钢板与结晶器面成直线放置,并与铸坯表面间留有小间隙,间隙使高速流动着的水充满并形成一层水膜。钢板上的狭缝向下倾斜,使得从中流出来的水能朝下流动。水膜既起强冷作用,又起支撑铸坯作用,这就是压力水膜结晶器。22 什么是曲面结晶器?曲面结晶器是中冶连铸开发的一种高效方坯结晶器技术。该技术是从传热角度出发,根据气隙产生的主要原因,通过对结晶器热变形和小方坯收缩的分析开发出来的。其基本特征如下:该结晶器从轴向看由三部分组成。上口部分轴向和横向具有变化的锥度,且横向中间往外凸;中间部分轴向具有变化锥度,横向为正方形;出口部分轴向和横向具有变化的锥度,横向中间往内凹,以补偿由结晶器热变形和小方坯收缩产生的气隙,并降低出口部角部区域摩擦力,使坯壳在结晶器内均匀、快速生长,从而获得高拉速,改善铸坯质量。23 高效方坯连铸机结晶器铜管内腔形状是根据什么原则设计的?高效方坯连铸机结晶器铜管内腔形状是根据连铸方坯的凝固特征设计的。主要考虑了两个方面:一是在弯月面附近,由于热流密度大,热量集中,结晶器铜管受热变形量。二是铸坯在凝固过程中的坯壳收缩。设计的原则是结晶器铜管内腔形状与凝固坯壳收缩规律相一致,减少气隙热阻。24 什么是精制铜水套技术?研究发现方坯连铸结晶器铜管外壁四周的冷却水流速不均匀,会导致结晶器铜管上的一个或多个壁面比其它壁面温度高,引起结晶器铜管热变形,严重影响铸坯质量和连铸生产。因此,水套与结晶器铜管之间的间隙均匀性非常重要,生产中要绝对保证结晶器铜管的外部尺寸和水套的内部尺寸之间保持精密公差。如水缝为4.8mm,当间隙相差仅1mm就会导致冷却水速变化20%,因此采用窄水缝技术的结晶器,就要配有精度要求非常高的水套,否则还不如采用宽水缝技术的结晶器。另外,通过对水套的研究还发现;在水套与法兰焊接处,由于焊接变形,水套发生鼓肚,使此处冷却水流速局部降低,导致与此对应处的结晶器铜管表面温度显著提高,也影响铸坯质量和连铸生产。目前,国内使用的水套绝大部分为先数控铣后,再拼装焊接在一起,或经简单分块冲压后在焊接在一起。因此,这类水套并不能保证真正意义上的高效连铸生产。综上所述;要从真正意义上解决高效连铸核心问题,其中之一就是要很好地解决水套内腔形状和尺寸精度控制问题。目前钢厂大量使用的结晶器铜管几乎都是挤压成型技术生产的,铜管内、外形及其尺寸控制已达到很高精度。如果能采用铜管生产技术来生产水套,这个问题就好办了,但前提要解决好用铜管生产技术生产出来的铜水套与水套法兰连接装配问题。因为水套法兰一般为钢件,如果钢与铜焊接在一起又会引起铜水套变形,而且铜与钢的焊接技术也不好掌握。国内科研人员巧妙地解决了这道难题。不用焊接,而是用简单纯机械加工和一般机械装配方法,就能完成法兰与铜水套之间的连接难题。这就是精制铜水套技术,是我国的自主知识产权。该项技术已成功应用在宣钢、浦钢、承钢、酒钢等钢厂的连铸生产中。25 高效连铸结晶器铜管材质的主要特征?高效连铸结晶器材质的要求是导热性好,抗热疲劳,强度高,耐磨性好,使用寿命长,高效连铸结晶器铜管材质的主要特征是铜管材质上述性能的综合性能最优。26 什么是人工附加气隙结晶器?有什么优点?人工附加气隙结晶器是新日本制铁株式会社开发的一种高效方坯结晶器技术,又称XMOLD。传统结晶器中热流量沿结晶器轴向分布极不均匀,在弯月面处最大,在结晶器下部热流量显著下降,这也是传统结晶器难以大幅提高连铸拉速的障碍。新日本株式会社认为:能不能找到抑制弯月面处的大量热流量,并使其向结晶器中下部转移的方法,实现结晶器内热流量沿结晶器轴向分布近似恒定,是解决结晶器高拉速的关键所在。新日本制铁株式会社采取二条措施解决上述问题。首先在弯月面附近人为培养人工气隙,使该区域热流下降;另外,铜管锥度采用抛物线锥度,以提高结晶器中下部热流。培养人工气隙的具体措施是在弯月面区域采取刻凹槽的方法,来控制热流的传递。实践证明该种结晶器非常适合品种钢生产。27 什么是热顶结晶器?铸坯表面质量很大程度上取决于弯月面处初生坯壳的均匀性,而初生坯壳的均匀性决定于弯月面处的热流密度和传热的均匀性。热流密度大,初生坯壳增长太快,会增加振痕深度,同时使坯壳提前收缩,增强了坯壳厚度的不均匀性。局部产生凹陷,组织粗化,产生明显的裂纹敏感性。为此,在结晶器弯月面区域镶嵌低导热材料,以减少热流密度,延缓坯壳收缩,即热顶结晶器。试验表明,浇注低碳钢时拉速为1.3m/min,弯月面处的热流密度:普通结晶器2MW/m2,热顶结晶器0.5MW/m2。采用热顶结晶器热流减少了75%,振痕减少了30%,表面质量得到明显改善。28 爆炸成型的结晶器铜管有何特点?带锥度的结晶器铜管可以采用仿型加工或带内芯和外模的压力成型方法制造,仿型加工会破坏铜的组织结构,影响使用寿命,加工复杂锥度需要特殊的加工设备,提高了制造成本。压力成型会产生较大的切头切尾,铜的收得率低。爆炸成型的结晶器铜管可以制成多锥度,有利于报废的旧结晶器得修复。29 爆炸成型的结晶器水套有何特点?随着高效连铸的发展,高效窄缝水套式结晶器在国内外得到了广泛的应用。窄缝水套式结晶器对导流水套的精度和形式提出了很高的要求。结晶器四侧水缝的偏差会对水流速带来很大的影响,造成四侧冷却不均匀。加工结晶器水套采用机加工后焊接以及整体挤压后焊接的方法都难以完全消除焊缝的影响。爆炸成型的结晶器水套具有无焊缝加工,制造精度高等特点。30 什么是喷淋式结晶器?有何特点?喷淋式结晶器是将管式结晶器隔离水缝改为喷淋水冷却,即由喷嘴喷出的喷淋水直接喷到结晶器铜管上实现冷却。喷淋式结晶器结构简单,对密封要求低,避免了水缝结晶器铜管角部冷却强度不可调,冷却强度相对较弱,温度分布不均匀等问题。喷淋式结晶器在小方坯连铸机上得到了广泛的应用。理论上讲,喷淋式结晶器可使用一般的冷却水,但在生产实际中出现的结垢、喷嘴堵塞等问题导致的事故影响了喷淋式结晶器的使用。31 什么是“水缝式”结晶器?有何特点?“水缝式”结晶器与喷淋式结晶器都属于管式结晶器。“水缝式”结晶器在结晶器铜管外加一水套管,由结晶器铜管与水套管之间形成的水缝通水冷却。“水缝式”结晶器使用稳定,不易发生堵塞。目前高效连铸普遍使用水缝小于4mm的窄水缝结晶器,提高冷却水的流速,配合抛物线锥度铜管,取得了很好的效果。32 什么是板坯在线调宽结晶器?为了适应生产多种规格铸坯的需要,缩短更换结晶器的时间,结晶器调宽可以在线调节。板坯在线调宽结晶器既是结晶器的两个窄边可以多次分小步向内或向外移动,直至调到预定的宽度,在生产过程中可在不停机的条件下完成对结晶器宽度的调整。33 结晶器为什么要在线调宽?为了生产多种规格铸坯,结晶器宽度要进行改变。结晶器在线调宽可以连续浇铸出不同宽度尺寸的铸坯,节省了停机时间,提高了生产效率;可减少铸坯切头切尾的损耗,提高收得率;可浇铸相近成分的钢水而不需停机。34 高效连铸为什么要实行结晶器液面控制?结晶器液面控制最基本的作用是避免结晶器的溢流和拉空。理论和生产实践表明,钢坯的许多缺陷都与结晶器钢水液面波动有关,高效连铸拉速提高,对结晶器钢水液面波动要求更高。钢水液面波动会引起坯壳厚度不均匀影响铸坯质量甚至发生漏钢,液面波动还会使振痕加深,出现卷渣等。因此,高效连铸特别要实行结晶器液面控制。35 结晶器液面检测常用的方法有哪些?结晶器液面检测常用的方法有:电涡流法、电磁感应法、热电偶法、红外线法、同位素法等。我国的很多厂家都采用了Cs137或Co60为放射源的同位素法。同位素法精度高、稳定性强,但要求严格管理,保证使用安全。36 结晶器为什么要振动,高效连铸对结晶器振动有什么特殊要求?结晶器实施有规律的往复振动可以防止拉坯时坯壳与结晶器黏结,同时获得良好的铸坯质量。结晶器向上运动时,减少新生的坯壳与结晶器壁产生黏结,以防止坯壳受到较大的应力,减少铸坯表面出现裂纹;而结晶器向下运动时,借助结晶器壁与坯壳的摩擦,在坯壳上施加一定的压力,愈合结晶器上升时拉出的裂痕。高效连铸对结晶器振动要求高频、小振幅,负滑脱时间不易太长,正滑脱时间里振动速度与拉速之差减小,合适的结晶器超前量。37 什么是结晶器超前量?结晶器超前量指负滑脱时间里结晶器行程超过铸坯的那段距离。研究认为,结晶器超前量取34mm较合适。一方面,结晶器超前量应足够大,以确保坯壳在钢液面处能与结晶器较好地分离。防止粘结;另一方面,结晶器超前量也不能太大,否则会产生深的、不均匀的振痕。38 什么是负滑脱量?在结晶器下振速度大于拉坯速度时,称为“负滑脱”。负滑脱量的定义为: =100% 式中 负滑脱量%,Vmax结晶器下振时最大速度,m/min;V拉拉坯速度,m/min。负滑脱能帮助“脱模”,有利于拉裂坯壳的愈合。39 什么是结晶器非正弦振动?有什么优点?结晶器非正弦振动是结晶器在振动时,其位移量在与正弦振动相同值的前提下,使结晶器上升具有比下降时间更长的的振动波形。拉速越高,保护渣的消耗量越低,润滑效果越差,尤其在结晶器液面附近发生漏钢的危险就越大。如何能提高弯月液面下铸坯与结晶器的润滑就成为突出的问题。结晶器非正弦振动波形使正滑脱时间增长,负滑脱时间减少,减小拉坯阻力,增加保护渣的消耗量,增加铸坯与结晶器的润滑减少漏钢。40 结晶器非正弦振动是如何实现的?实现结晶器非正弦振动最常用的方法是通过液压伺服系统,可以实现在线调节振幅和频率,按工艺要求设定波形。液压伺服系统实现结晶器非正弦振动精度比较高,在生产实践中得到了很好得应用,但设备成本比较高。采用机械方法也可以实现结晶器非正弦振动,国内已有开发使用机械方法实现结晶器非正弦振动的装置。据报道,国外已开发使用了用数字液压缸代替液压伺服系统,实现结晶器非正弦振动,大大降低了成本,具有广阔的市场前景。41 什么是板簧式结晶器振动系统?有什么优点?传统的结晶器振动系统多采用四偏心型和短臂四连杆型机构,一般认为这种机构存在导向设计上的缺陷,即由于磨损而产生不可控制的运动偏差。因此,出现了柔性体结晶器振动导向机构板簧式结晶器振动系统。将四连杆型机构的上臂用弹簧钢板代替的振动系统称做半板簧式结晶器振动装置,四连杆型机构全部用弹簧钢板代替的振动系统称做全板簧式结晶器振动装置。板簧式结晶器振动系统由于是无轴承的振动机构,基本无磨损,具有使用性能稳定,运动精度高,寿命长等优点。42 什么是结晶器参数优化,与提高钢坯质量有什么关系?结晶器参数优化是指对结晶器特性参数、结晶器冷却参数、结晶器振动特性参数进行优化。结晶器特性参数包括:铜管支撑形式、铜管厚度与园角半径、铜管倒锥度、铜管材质、铜管长度;结晶器冷却参数包括:水缝宽度、水套形式、冷却水压力、水质;结晶器振动特性参数包括:负滑脱时间、结晶器超前量、结晶器内钢液面水平。通过结晶器参数优化,能提高连铸生产铸坯表面和皮下质量。结晶器特性参数优化:优化结晶器支撑型式,能改进结晶器均匀变形。优化铜管厚度与园角半径,使钢与结晶器粘结现象下降并有助于消除铸坯纵向偏角裂。优化铜管倒锥度,能使气隙热阻显著下降,有利于高拉速和铸坯表面质量。优化铜管材质,能提高铜管的软化温度,铜管不易变形。优化铜管长度,有利于延长凝固坯壳在结晶器内的停留时间,减少漏钢和脱方。结晶器冷却水参数优化:优化水缝宽度,对降低结晶器热面温度和减少结晶器变形都有利。优化水套型式,能很好地解决水套内腔形状及尺寸精度控制,有利于窄水缝技术的进一步推行。优化冷却水压力,能使水速进一步提高,有利于降低结晶器热面温度和减少结晶器热变形。优化水质,能保持铜管壁上尽可能无沉淀物和水垢,减少结晶器永久变形,提高铜管使用寿命。结晶器振动特性参数优化:优化负滑脱时间,能使振痕深度降低,振痕均匀性更趋一致,提高铸坯表面质量。优化结晶超前量,能防止粘结现象发生,避免产生较深的不均匀和振痕。优化结晶内钢液面水平,既能避免铜管此过程产生永久变形,又能使凝固坯壳在结晶器内滞留时间不至于太短,有利于连铸生产和铸坯质量地提高。43 结晶器为什么要润滑,高效连铸对结晶器润滑有什么要求?结晶器润滑可以减小拉坯阻力,并可由于润滑剂充满气隙而改善传热,能防止铸坯坯壳与结晶器内壁粘结,能改善铸坯表面质量,对保证连铸顺利浇铸,起了重要的作用。结晶器润滑有两类:油类和保护渣类。高效连铸机通常用保护渣类。连铸要求保护渣应在结晶器和坯壳间形成稳定而均匀的液渣膜。为此,保护渣的粘度必须与拉速相匹配。一般要求V=2PaSm/min,同时保护渣消耗量不低于0.3Kg/m2。此外液态渣必须在钢液面上形成一定的厚度,以保证液态渣向结晶器和坯壳间的填充。同时吸收钢水中的夹杂物,一般要求液渣层厚度大于10mm。可见,提高拉速必须采用低粘度、低熔点、高熔化速度、大凝固系数的保护渣。44 什么是结晶器保护渣技术? 连铸保护渣的主要作用是什么?随着高效连铸的发展,原有保护渣已满足不了使用要求。高效连铸采用的保护渣必须是低粘度、低熔点、高熔化速度、大凝固系数的新型保护渣。为此人们需要研究、探讨、开发新型的保护渣。保护渣的专业化生产,系列化供应已成为连铸生产业的当务之急。对保护渣物化性能的改进是实现高效连铸的又一关键技术。保护渣的作用有以下几方面:(1) 绝热保温防止散热;(2) 隔开空气防止钢水二次氧化,保证钢的质量;(3) 吸收溶解从钢水中上浮到钢渣界面的夹杂物;(4) 结晶器壁与凝固壳之间有一层渣膜起润滑作用,减少拉坯阻力,从而可以防止凝壳与结晶器壁的粘结。(5) 充填坯壳与结晶器之间的气隙,改善结晶器传热。45 连铸保护渣的基本物理、化学特性是什么?保护渣的基本物理、化学性能是测定渣子的理化指标,它主要包括以下几项:(1) 化学成分:各牌号的保护渣一般由三部分物料组成,一是基料部分,二是辅助材料,三是熔速调节剂。它们都有定量的配比。对特殊要求按特殊的配比配制。(2) 熔化温度:将成品渣粉制成规定的33mm的试样,在专门仪器上把试样加热到圆柱体边为半球形的温度,定义达到半球点的温度叫熔化温度,通常将保护渣的熔点温度控制在1200以下。(3) 粘度:它表示渣粉熔化成液体的流动性能。粘度直接影响到熔渣吸收氧化物夹杂的速度和润滑铸坯的效果。粘度的测量是用扭摆粘度计或旋转粘度计测定1300渣子的粘度来比较不同渣子的流动性。(4) 熔化速度:它衡量渣子熔化过程的快慢。熔速可用标准试样在规定温度下完全熔化或液化所需要的时间来表示。(5) 铺展性:它表示粉渣加到钢液面上的覆盖能力和覆盖的均匀性。可以用一定容积内的保护渣粉,从规定高度下流到平板上铺散的面积来衡量。(6) 水分:保护渣粉容易吸潮,吸附水量超过规定要渣粉结团,影响使用效果。46 高效连铸保护渣有何技术特点?为了满足高速连铸,保护渣必须符合下列要求:(1) 在高拉速或拉速变化较大时,能保持足够的消耗量,避免发生粘结漏钢。(2) 结晶器与坯壳之间形成厚度适宜且分布均匀的渣膜,以降低摩擦力,促进传热,使坯壳快速均匀地生长。(3) 具有适当的熔渣层厚度,防止高拉速时熔渣供应不足。(4) 要有良好的溶解、吸收夹杂物的能力,并在吸收夹杂物以后,仍能保持稳定的使用性能。因此高速连铸用保护渣应具有低粘度、低熔点、高熔化速度和良好的吸收夹杂物性能。47 电磁搅拌技术在连铸中是如何应用的?在连铸生产中应用电磁搅拌技术有助于提高钢水的纯净度,改善铸坯凝固结构,能提高铸坯的表面质量和内部质量。电磁搅拌的原理:当磁场以定速度切割钢液时,钢液中产生感应电流。载流钢水与磁场的相互作用力产生电磁力,从而驱动钢水运动。以感应方式分类电磁搅拌可分为:旋转搅拌、直线搅拌、螺旋搅拌。通常电磁搅拌安放在三个位置上:1. 结晶器铜管四周与结晶器外壳之间,称为M-EMS电磁搅拌器。2. 结晶器出口附近,称为S-EMS电磁搅拌器。3. 凝固末端也就是二冷段后1/41/3处,称为F-EMS搅拌器。应用M-EMS的作用是在铸坯凝固初期搅拌钢水运动,可均匀温度、消除过热、析出气体及促使夹杂物上浮,形成较宽的细小等轴晶带,并能使铸坯获得良好的表面质量。应用S-EMS的作用是改善凝固过程来获得中心较宽的等轴晶带。应用F-EMS的作用是改善铸坯的中心偏析,搅拌固液两相区,使心部偏析金属趋于均匀,同时产生较多的结晶核,这样能扩大等轴晶区、细化晶粒,对一些高碳钢而言是非常重要的。通过历年来的实践,人们根据工艺质量要求分别可将三种电磁搅拌进行几种组合:S1S2-EMS、MF-EMS、SF-EMS和MSF-EMS。48 高效连铸对结晶器下方铸坯支撑有什么特殊要求?高效连铸的核心技术是高速浇铸,浇铸速度的提高使得结晶器下方出口处铸坯坯壳厚度减薄,对结晶器下方铸坯有效支撑和强化冷却是高效连铸防止鼓肚、裂纹、提高坯壳强度和减少漏钢的主要保证之一。板坯采用格栅,方坯采用水幕强冷等都是处于这种考虑。板坯辊系在拉速提高的前提下,需要合理地选择辊径的尺寸、材料及合理的结构。辊系的排列密疏要合理,留出合适的冷却空间,要采用连续矫直和轻压下等先进技术,保证在高拉速的条件下,减少铸坯的内部和外部缺陷,减少外形缺陷,确保铸坯的高质量。方坯结晶器下口支撑一般有两种形式,足辊和多级结晶器。有资料介绍,足辊适用于拉速在3.5m/min以下拉速,多级结晶器适用于拉速4.5m/min以下。可见高效连铸结晶器下方铸坯支撑选用多级结晶器更为合适。49 二次冷却与铸坯质量有什么关系?经过二次冷却的铸坯,易存在:表面缺陷、内部缺陷和形状缺陷,它影响了铸坯的质量。通常表面缺陷起源于结晶器,内部缺陷起源于二次冷却,夹杂等来源于钢水等,在这里我们不分析它的延续性,只分析二次冷却的影响。 1. 二次冷却的表面缺陷 (1) 表面纵向裂纹:主要原因是二次冷却局部过冷产生纵向凹陷而导致纵向裂纹。(2) 表面、角部横向裂纹:在二次冷却的水量过大,喷嘴偏斜直射铸坯角部等造成了表面横向裂纹。(3) 表面对角线裂纹:一般出现在方坯中。原因是四个面喷水不均匀,喷嘴堵塞等造成。2. 二次冷却的内部缺陷(1) 中间裂纹:它是由于铸坯在凝固过程中过冷或不均匀二次冷却产生的热应力作用在树枝晶较弱的部位而产生的,也称为冷却裂纹。(2) 中心星状裂纹(轴心裂纹):原因是二次冷却过激造成了中心星状裂纹。(3) 中心偏析与中心疏松中心偏析与中心疏松是对应的,它的形成是铸坯在二次冷却区凝固过程中,由于喷水冷却不均,柱状晶生长不规则,产生了“搭桥”现象。上面的钢水不能流下来补充下面的钢水的凝固收缩,使桥下面钢水凝固后有明显的缩孔和疏松。同时桥下面钢水的凝固收缩力把周围树枝晶间的富集S、P的液体吸入,使中心偏析明显增加。3. 形状缺陷(1) 菱形变形(脱方):它主要是在结晶器中形成,二次冷却不均匀会加剧菱形变形的形成,因素是喷嘴堵塞及安装时不对中、四侧水量不均匀,喷射角过大造成角部过冷。(2) 纵向凹陷:原因是二冷装置对弧不准;二次冷却局部过冷(特别是二次冷却装置的上部)。50 高效连铸的二次冷却与传统连铸有什么不同?高效连铸与传统连铸相比拉坯速度明显提高。在高拉速浇铸情况下,结晶器出口处坯壳较薄,冶金长度增加。高效连铸的二次冷却与传统连铸二次冷却相比的特点是:冷却强度提高。在国外高速连铸中,二冷比水量已达到2.53.0l/kg。二次冷却要求均匀。即根据铸坯不同情况实现控制冷却。为了满足连铸高效化的要求,达到均匀强冷的效果,获得具有恒定高温的连铸坯,广泛采用了计算机动态控制二冷技术,对二冷实行优化配水。此外,对冷却方式进行改进,开发高效冷却技术,如采用了气水喷雾冷却、喷雾冷却、干式冷却等。51 二次冷却的强度是如何确定的?确定二次冷却强度的原则:(1) 在整个二冷区应当采取自上到下冷却强度由强到弱的原则。由结晶器拉出的铸坯进入二冷区上段时,内部液芯量大,坯壳薄,热阻小,坯壳凝固收缩产生的应力也小。此时加大冷却强度可使坯壳厚度迅速增加,并且在较高的拉速下也不会拉漏。当坯壳厚度增加到一定程度以后,随着坯壳热阻的增加,则应逐渐减小冷却强度,以避免铸坯表面热应力过大产生裂纹。(2) 为了提高铸机的生产率,应当采取高拉速和高冷却效率,但在提高冷却效率的同时,要避免铸坯表面局部降温剧烈而产生裂纹,故应使铸坯表面横向及纵向都能均匀降温。通常铸坯表面冷却速度应小于200/m。铸坯表面温度回升应小于100/m。(3) 700900的温度范围是铸坯的脆性温度区,如铸坯表面温度在此范围内矫直时,易于产生横裂纹。所以应控制二次冷却强度,使铸坯表面温度降至900以上,即高于脆性温度区进行矫直。此外,为了保证铸坯在二冷区支承辊之间形成的鼓肚量最小,在整个二冷区应限定铸坯表面温度,通常控制在1100以下。(4) 在确定冷却强度时要必须适应不同钢种的需要,特别是裂纹敏感性强的钢种,要采用弱冷。52 二次冷却的方式有哪些? 目前广泛使用的二次冷却方式有:全水喷雾冷却、气水喷雾冷却、“干式”冷却。(1) 全水喷雾冷却。全水喷雾冷却采用专门的喷嘴将冷却水雾化后喷向铸坯表面对铸坯进行冷却。按照喷出水雾的形状不同,雾化喷嘴分为:实心圆锥、空心圆锥、矩形和扁平型。目前我国小方坯连铸机二冷系统广泛采用水喷雾冷却。全水喷雾冷却具有管路简单、维修方便、操作成本低等优点,但也有以下缺点:喷嘴易堵塞;调节流量的范围小;冷却不均匀,冷却水利用率不高等。(2) 气水喷雾冷却气水喷雾冷却利用压缩空气将水滴进一步雾化,使喷出的水滴速度高、直径小(只有2060m),喷水面积增大。气水喷雾冷却具有冷却效率高、冷却均匀、铺展面大、喷嘴不易堵塞等特点。但其管路系统复杂,压缩空气消耗量大,蒸汽量大,投资费用和生产成本高,目前主要在板坯连铸机和大方坯连铸机上使用。(3) 所谓“干式”冷却就是二次冷却区不喷水,完全依靠铸坯的辐射和水冷支承辊的间接冷却方式。53 连铸二次冷却是如何控制的?连铸二次冷却的控制方式可分为以下几种:(1) 手动控制:手动控制方式就是按一定的经验人工控制阀门,这种情况下二次冷却水基本上是不变化的,与拉速的变化无关。这是一种原始的控制方式。(2) 半自动控制:采用半自动控制时,二次冷却水参数的设定是手动的,而冷却水流量的调节是自动进行的。通常这种方式是通过仪表控制来实现的。操作工根据工艺要求,在仪表设定盘上对各冷却区设定好相应的冷却水流量,然后仪表自动控制阀门进行调节。这种较低档次的控制方式多用于铸坯品种和尺寸单一的连铸机。(3) 自动控制:自动化控制主要通过PLC或计算机实现自动配水。二冷模型中主要考虑了拉速这一因素。计算机控制是一种动态的控制,目前主要的方法有比例控制、参数控制、目标表面温度控制。54 为什么要采用液心矫直?提高拉坯速度是提高连铸机生产能力的有效途径,按常规设计,铸坯的液芯长度与拉速成正比,因此高拉速连铸机铸坯的液芯必然很长,如仍采用固相矫直,势必使连铸机半径很大,这明显不合理。因此就需要采用带液芯矫直。55 什么叫多点弯曲、多点矫直技术?一点矫直是铸坯从结晶器出来后,经1/4圆弧长度(R/2)达到水平切线的切点,被强迫矫直后才沿水平线送出。此设计的弧形半径R为一常数(R=R0,R0为矫直时半径),曲线的曲率C一直保持某个常量(C=1/R0),在切点处突然变为0(C=1/),即为一直线。每个矫直点都会由内弧二辊外弧一辊构成。多点矫直是把集中在一点的大幅度变形分散到若干点去逐步变形,使每一点的变形率不致超过允许的极限。中间要用若干过渡半径R1R2R3Rn,按顺序分步达到目标。总的矫直变形率uB是R0Rn一点矫直时的变形率的总和,uB=123n。一点弯曲是指直结晶器出来的铸坯需经一组顶弯辊(一般内弧一个外弧两个组成一组)顶弯后进入弧形段,此时顶弯半径RE=R。多点弯曲是指直结晶器出来的铸坯需经多组顶弯辊顶弯后进入弧形段,它的变化是:RR1,R1R2,R2Rn,RnRE=R进入弧形区。56 为什么高效连铸普遍使用多点矫直、多点弯曲技术?由于高效连铸中铸坯的液芯长度很长,需要进行带液芯矫直。在带液相矫直时,铸坯在两相区界面处坯壳的强度和允许的变形率极低。采用多点矫直可以把集中一点的应变量分散到多个点完成,将矫直点的变形率控制在允许范围之内,消除了铸坯产生内裂的可能性,可以实现带液芯矫直。因此在高速连铸中普遍使用多点弯曲、多点矫直技术。57 什么叫轻压下技术?我们知道中心偏析的形成是由于向内生长的凝固前沿形成“搭桥”,阻隔了钢水的向下输送。凝固与冷却收缩就会导致凝固收缩力把周围树枝晶间的富集S、P的液体吸入,产生中心偏析。中心偏析会严重地影响铸坯内部质量。为了减轻中心偏析,在产生中心偏析段(铸坯凝固末段)应用了轻压下技术,即在快要完全凝固处,对铸坯进行轻微地压下(如2毫米),减轻中心偏析。58 什么是“压缩矫直”技术?“压缩矫直”是板坯连铸机为提高拉速实行液芯矫直而减小内裂的新技术。“压缩矫直”就是:在铸坯矫直区内,给铸坯施加一定的压力,减小甚至完全抵消铸坯在矫直过程中所产生的拉应力,使两相区坯壳的延伸率不超过允许值,以达到提高拉坯速度,避免铸坯产生内裂,改善铸坯质量,实现带液芯矫直的目的。图58表示了“压缩矫直”的原理:在矫直点前面布置有一组驱动辊,给铸坯以一定推力,而在矫直点后布置有一组制动辊,给铸坯以一定反推力,使铸坯在矫直区内处于压缩状态下矫直,因推坯力大于制动阻力,拉坯仍照常进行。图中a是驱动辊与制动辊在铸坯中产生的压应力,b是矫直应力,c是合成应力,在内弧中拉应力减小。通过控制制动力的大小,可使矫直点处铸坯内叠加后的合成应力为很小的拉应力或等于零,甚至可为压应力,这样就可避免在铸坯内出现裂纹。图58 压缩矫直原理及坯壳应力图1 内弧表面;2两相界面;3外弧表面。59 高效连铸对冷却水供水系统有什么要求?冷却水系统要适应高效连铸,首先要保证供水系统的完善,确保水压、水流量、水质在规定的范围内。在供水控制方面要实现半自动或全自动化控制,也就是实现二冷水动态控制。它的控制水平好坏,直接影响着铸坯的内部质量和外部质量以及外形缺陷,影响着铸机能否实现高拉速,是高效连铸发展中的一个不可忽略的关键技术。在其冷却水系统的设备上,要根据产品的要求,合理地分配水量,要保证水路的畅通无堵。选择良好的设备适应良好的配水制度。60 什么是漏钢预报装置?结晶器内产生粘结漏钢时,V型的坯壳破裂处向纵横方向扩大的同时下降到结晶器下口造成漏钢。坯壳破裂部

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论