离散数学概率PPT课件.ppt_第1页
离散数学概率PPT课件.ppt_第2页
离散数学概率PPT课件.ppt_第3页
离散数学概率PPT课件.ppt_第4页
离散数学概率PPT课件.ppt_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DiscreteMathCS2800 Prof BartSelmanselman cs cornell eduModuleProbability Partd 1 ProbabilityDistributions2 MarkovandChebyshevBounds 1 DiscreteRandomvariable DiscreterandomvariableTakesononeofafinite oratleastcountable numberofdifferentvalues X 1ifheads 0iftailsY 1ifmale 0iffemale phonesurvey Z ofspotsonfaceofthrowndie 2 ContinuousRandomvariable Continuousrandomvariable r v TakesononeinaninfiniterangeofdifferentvaluesW GDPgrows shrinks thisyearV hoursuntillightbulbfailsForadiscreter v wehaveProb X x i e theprobabilitythatr v Xtakesonagivenvaluex Whatistheprobabilitythatacontinuousr v takesonaspecificvalue E g Prob X light bulb fails 3 14159265hrs However rangesofvaluescanhavenon zeroprobability E g Prob 3hrs X light bulb fails 4hrs 0 1Rangesofvalueshaveaprobability 0 3 ProbabilityDistribution Theprobabilitydistributionisacompleteprobabilisticdescriptionofarandomvariable Allotherstatisticalconcepts expectation variance etc arederivedfromit Onceweknowtheprobabilitydistributionofarandomvariable weknoweverythingwecanlearnaboutitfromstatistics 4 ProbabilityDistribution ProbabilityfunctionOneformtheprobabilitydistributionofadiscreterandomvariablemaybeexpressedin ExpressestheprobabilitythatXtakesthevaluexasafunctionofx aswesawbefore 5 ProbabilityDistribution TheprobabilityfunctionMaybetabular 6 ProbabilityDistribution TheprobabilityfunctionMaybegraphical 1 2 3 50 33 17 7 ProbabilityDistribution TheprobabilityfunctionMaybeformulaic 8 ProbabilityDistribution Fairdie 9 ProbabilityDistribution Theprobabilityfunction properties 10 CumulativeProbabilityDistribution CumulativeprobabilitydistributionThecdfisafunctionwhichdescribestheprobabilitythatarandomvariabledoesnotexceedavalue Doesthismakesenseforacontinuousr v Yes 11 CumulativeProbabilityDistribution CumulativeprobabilitydistributionTherelationshipbetweenthecdfandtheprobabilityfunction 12 CumulativeProbabilityDistribution Die throwing graphical tabular 13 CumulativeProbabilityDistribution ThecumulativedistributionfunctionMaybeformulaic die throwing 14 CumulativeProbabilityDistribution Thecdf properties 15 OfadiscreteprobabilitydistributionOfacontinuousprobabilitydistributionOfadistributionwhichhasbothacontinuouspartandadiscretepart ExampleCDFs 16 Functionsofarandomvariable Itispossibletocalculateexpectationsandvariancesoffunctionsofrandomvariables 17 Functionsofarandomvariable ExampleYouarepaidanumberofdollarsequaltothesquarerootofthenumberofspotsonadie Whatisafairbettogetintothisgame 18 Functionsofarandomvariable LinearfunctionsIfaandbareconstantsandXisarandomvariableItcanbeshownthat Intuitively whydoesbnotappearinvariance And whya2 19 TheMostCommonDiscreteProbabilityDistributions somediscussedbefore 1 Bernoullidistribution2 Binomial3 Geometric4 Poisson 20 Bernoullidistribution TheBernoullidistributionisthe coinflip distribution XisBernoulliifitsprobabilityfunctionis X 1isusuallyinterpretedasa success E g X 1forheadsincointossX 1formaleinsurveyX 1fordefectiveinatestofproductX 1for madethesale trackingperformance 21 Bernoullidistribution Expectation Variance 22 Binomialdistribution ThebinomialdistributionisjustnindependentBernoullisaddedup Itisthenumberof successes inntrials IfZ1 Z2 ZnareBernoulli thenXisbinomial 23 Binomialdistribution ThebinomialdistributionisjustnindependentBernoullisaddedup Testingfordefects withreplacement HavemanylightbulbsPickoneatrandom testfordefect putitbackPickoneatrandom testfordefect putitbackIftherearemanylightbulbs donothavetoreplace 24 Binomialdistribution Let sfigureoutabinomialr v sprobabilityfunction Supposewearelookingatabinomialwithn 3 WewantP X 0 Canhappenoneway 000 1 p 1 p 1 p 1 p 3WewantP X 1 Canhappenthreeways 100 010 001p 1 p 1 p 1 p p 1 p 1 p 1 p p 3p 1 p 2WewantP X 2 Canhappenthreeways 110 011 101pp 1 p 1 p pp p 1 p p 3p2 1 p WewantP X 3 Canhappenoneway 111ppp p3 25 Binomialdistribution So binomialr v sprobabilityfunction 26 Binomialdistribution Typicalshapeofbinomial Symmetric 27 Expectation Variance Aside AssumeV X V Y andXandYareindependentR Vs then But Hmm 28 Binomialdistribution Asalesmanclaimsthatheclosesadeal40 ofthetime Thismonth heclosed1outof10deals Howlikelyisitthathedid1 10orworsegivenhisclaim 29 Binomialdistribution Lessthan5 or1in20 So it sunlikelythathissuccessrateis0 4 Note So ismostlikelybutmaynotbethatlikely 30 Binomialandnormal Gaussiandistribution Thenormaldistributionisagoodapproximationtothebinomialdistribution large n smallskew B n p Prob densityfunction 31 GeometricDistribution Ageometricdistributionisusuallyinterpretedasnumberoftimeperiodsuntilafailureoccurs Imagineasequenceofcoinflips andtherandomvariableXistheflipnumberonwhichthefirsttailsoccurs Theprobabilityofahead asuccess isp 32 Geometric Let sfindtheprobabilityfunctionforthegeometricdistribution etc So xisapositiveinteger 33 Geometric Notice thereisnoupperlimitonhowlargeXcanbeLet scheckthattheseprobabilitiesaddto1 Geometricseries 34 Geometric Expectation Variance SeeRosenpage158 example17 differentiatebothsidesw r t p 35 Poissondistribution ThePoissondistributionistypicalofrandomvariableswhichrepresentcounts Numberofrequeststoaserverin1hour Numberofsickdaysinayearforanemployee 36 ThePoissondistributionisderivedfromthefollowingunderlyingarrivaltimemodel Theprobabilityofanunitarrivingisuniformthroughtime Twoitemsneverarriveatexactlythesametime Arrivalsareindependent thearrivalofoneunitdoesnotmakethenextunitmoreorlesslikelytoarrivequickly 37 Poissondistribution TheprobabilityfunctionforthePoissondistributionwithparameter is islikethearrivalrate highermeansmore fasterarrivals 38 Poissondistribution Shape Low Med High 39 MarkovandChebyshevbounds 40 Often youdon tknowtheexactprobabilitydistributionofarandomvariable Westillwouldliketosaysomethingabouttheprobabilitiesinvolvingthatrandomvariable E g whatistheprobabilityofXbeinglarger orsmaller thansomegivenvalue Weoftencanbyboundingtheprobabilityofeventsbasedonpartialinformationabouttheunderlyingprobabilitydistribution Partialinfo e g theexpectation Why MarkovandChebyshevbounds 41 Theorem MarkovInequality LetXbeanonnegativerandomvariablewithE X Then foranyt 0 Hmm Whatif Sure Note relatescumulativedistributiontoexpectedvalue gives But Can thavetoomuchprob totherightofE X 42 Proof WheredidweuseX 0 3rdline I e 43 Alt proof MarkovInequality Define E Y E X 44 Example Considerasystemwithmeantimetofailure 100hours UsetheMarkovinequalitytoboundthereliabilityofthesystem R

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论