自动避障循迹小车 毕业论文.doc_第1页
自动避障循迹小车 毕业论文.doc_第2页
自动避障循迹小车 毕业论文.doc_第3页
自动避障循迹小车 毕业论文.doc_第4页
自动避障循迹小车 毕业论文.doc_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自动避障循迹小车毕业论文目 录1 绪论11.1智能小车的研究与意义11.2智能小车的现状31.2.1国外移动机器人研究31.2.2国内移动机器人的状况41.2.3小车避障现状综诉41.2.4智能小车的现状41.3论文研究内容与主要结构51.3.1基于单片机控制的智能循迹避障小车51.3.2文章主要结构52 方案选型设计62.1车体设计62.2电机驱动设计62.2.1电机选择62.2.2驱动选择72.2.3H桥式电路工作原理92.2.4PWM调速技术92.3循迹模块92.3.1光电传感器的工作原理92.3.2光电传感器的分类和工作方式92.3.3光电传感器的选择102.4避障模块112.4.1超声波测距的原理112.4.2超声波传感器的分类122.4.3超声波测距特点122.4.4超声波模块选择132.5显示模块142.5.1数码管的结构及工作原理142.5.2数码管的选择152.6控制系统模块152.6.1单片机的发展152.6.2AT89C52单片机的简单介绍172.7电源模块173 硬件设计183.1总体设计183.1.1小车总体概述183.1.2小车总体设计框图193.2驱动电路设计193.3信号检测模块电路设计213.3.1循迹模块信号检测电路213.3.2壁障模块和显示信号检测电路223.4显示模块电路设计243.5主控电路设计273.5.1单片机最小系统设计273.5.2主控电路图304 软件设计314.1主程序设计314.1.1主程序框图314.1.2主程序流程图324.2循迹模块程序设计334.3显示模块程序设计334.4避障模块程序设计345 制作安装与调试355.1小车的安装355.2小车的调试355.3智能小车的功能36结论37参考文献38附录:40中文译文44致 谢52中国矿业大学2012届本科生毕业设计1 绪论1.1智能小车的研究与意义 移动机器人是机器人领域的一个分支,他的研究始于60年代末期,斯坦福研究院(SRI)的Nits Nilssen和Charles Rosen 等人,在1966年至1972年间研制出了名为Shake的自主移动机器人1。 进入20世纪80年代以后,人们的研究方向逐渐转移到了面向实际应用的室内移动机器人的研究,并逐步形成了自主式移动机器人AMR(Indoor Autonomous Mobile Robot)概念。美国国防高级研究计划局(DARPA)专门立项,制定了地面天人作战平台的战略计划。从此在全世界掀开了全面研究室外移动机器人的序幕,如DARPA的“战略计算机”计划中的自主地面车辆(ALV)计划(19831990),能源部制定的为期十年的机器人和智能系统计划(RIPS)(19861995),以及后来的太空机器人计划;日本通产省组织的极限环境下作业的机器人计划;欧洲尤里卡中的机器人计划等。初期的研究,主要从学术角度研究室外机器人的体系结构和信息处理,并建立试验系统进行验证。虽然由于80年代对机器人的智能行为期望过高,导致室外机器人的研究未达到预期的效果,但却带动了相应技术的发展,为探讨人类研制智能机器人的途径积累了经验。同时,也推动了其他国家对移动机器人的研究与开发2。 智能小车作为移动机器人的典型代表,目前国内外的许多大学都在积极投入人力、财力进行开发。主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。智能小车,是一个集环境感知、规划决策,自动行驶等功能于一体的综合系统,它可以分为三大组成部分:传感器检测部分、执行部分、CPU。机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避3。 在移动机器人中,传感器起着举足轻重的作用。视觉、激光、红外、超声传感器等都在实际系统中得到了广泛的应用。其中,超声波传感器以其信息处理简单、速度快和价格低,被广泛用作移动机器人的测距传感器,以实现避障、定位、环境建模和导航等功能4。考虑实际情况,传感检测部分考虑到小车一般不需要感知清晰的图像,只要求粗略感知即可,所以可以舍弃昂贵的CCD传感器而考虑使用价廉物美的红外反射式传感器和超声波传感器来充当。智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度。单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现精确调速;第二,可以由软件模拟PWM输出调制,需要占用单片机资源,难以精确调速,但单片机型号的选择余地较大5。考虑到实际情况,本文选择第二种方案。CPU使用STC89C52单片机,配合软件编程实现。 单片机在现今社会的应用领域越来越广泛,无论是生活,生产上,单片机的身影无处不在。ATMEL公司的STC89C52单片机可以广泛的应用于计算机外部设备、工业实时控制、仪器仪表、通讯设备、家用电器等各个领域。STC89C52可以说是单片机领域的主流产品,其应用如此广泛,所以有必要学习和应用该单片机,以满足实际产品开发的需求,也是适应社会智能化、自动化的趋势6。 以89C52为控制核心,利用超声波传感器检测道路上的障碍,控制智能小车的自动避障,快慢速行驶,以及自动停车,并可以自动记录时间、里程和速度,自动寻迹和寻光功能。89C52是一款八位单片机,它的易用性和多功能性受到了广大使用者的好评。它是第三代单片机的代表。 第三代单片机包括了Intel公司发展MCS-51系列的新一代产品,如8C15280C51FA/FB80C51GA/GB8C4518C452,还包括了PhilipsSiemensADMFujutsuOKIHarria-MetraATMEL等公司以80C51为核心推出的大量各具特色与80C51兼容的单片机。新一代的单片机的最主要的技术特点是向外部接口电路扩展,以实现Microcomputer完善的控制功能为己任,将一些外部接口功能单元如A/DPWMPCA(可编程计数器阵列)WDT(监视定时器)高速I/O口计数器的捕获/比较逻辑等。这一代单片机中,在总线方面最重要的进展是为单片机配置了芯片间的串行总线,为单片机应用系统设计提供了更加灵活的方式。Philips公司还为这一代单片机80C51系列8C592单片机引入了具有较强功能的设备间网络系统总线-CAN(Controller Area Network BUS)5。 该设计的实际意义是通过构建智能小车系统,培养设计并实现自动控制系统的能力。在实践的过程中,熟悉以单片机为核心控制芯片,设计小车的检测、驱动和显示等外围电路,采用算法实现小车的智能控制。灵活的运用所学的相关学科的理论知识,结合实际电路设计的具体实现方法,达到理论和实际的统一。在此过程中,加深对理论知识的理解和认识。且该设计具有实际意义,可以应用于考古、机器人、娱乐等许多方面。尤其是在玩具机器人研究方面具有很好的发展前景。所以本设计与实际相结合,现实意义很强境感知、规划决策、自动行驶等功能于一体的综合系统它集中地运用了计算机、传感、信息、通讯、导航、人工智能及自动控制等技术是典型的高新技术综合体3。1.2智能小车的现状1.2.1国外移动机器人研究 到20世纪90年代,以研制高水平的环境信息传感器和信息处理技术,适应性强的移动机器人控制技术,真实环境下的规划技术为标志,展开了移动机器人更高层次的研究。随着技术的进步,移动机器入开始在更现实的基础上,开拓各个应用领域,向实用化前进2。如1997年牛津大学机器人研究小组采用分布式滤波及局部智能控制代理的系统模式,利用卡尔曼滤波方法融合来自摄像机、激光测距、声纳的数据信息,设计出了在已知或未知的工厂环境下工作的移动机器人。美国国家航空和宇宙航行局(nasa)资助研制的八足行走机器人。丹蒂”,作为能实现远程探险的高性能移动机器人,于1994年在斯珀火山的火山口迸行了成功的表演。美国nasa研制的火星探测机器人“sojourner”于1997年登上火星,验证了自主移动机器人在火星表面运动和进行科学试验的可行性。2003年,美国nasa又派出两个火星着陆器,这两个着陆器上各带勇气号和机遇号火星漫游者,到火星上采集数据在任务期间,“勇气”创造了日行27.5米的纪录,打破了“sojourner”97年创下的日行7米的记录;“机遇”号也己成功地在火星上进行了多种科学实验。后来,美国宇航局又在研究另一种新型的火星探测器一火星科学实验室(MSL),是一种适用于所有地形的多用途机器人,乃执行任务。德国研制了一种轮椅机器人,并在乌尔姆市中心车站的客流高峰期的环境中和1998年汉诺威工业商品展览会大厅环境中进行了超过36小时的考验,所表出的性能是其它现存的轮椅机器人和移动机器人所不可比的。另外,自从1996年成功地举行了第一次世界机器人足球赛以来,现在一年一度的世界机器人足球赛已经吸引了越来越多的团体参加,极大地推进了多移动机器人技术的研究,成为研究和验证人工智能成果的实验床6。1.2.2国内移动机器人的状况 在国内,从“七五”开始,我国的移动机器人研究开始起步,经过多年来的发展,已经取得了一定的成绩。清华大学智能移动机器人于1994年通过鉴定。涉及到五个方面的关键技术:基于地图的全局路径规划技术研究;基于传感器信息的局部路径规划技术研究;路径规划的仿真技术研究;传感技术、信息融合技术研究;智能移动机器人的设计和实现。香港城市大学智能设计、自动化及制造研究中心的自动导航车和服务机器人。中国科学院沈阳自动化研究所得AGV和防暴机器人。中国科学院自动化所自行设计、制造的全方位移动式机器人视觉导航系统。哈尔滨工业大学于1996年研制成功的导游机器人等1。 自主移动机器人的研究虽取得了很大的进展,但是对于复杂的应用,仍不能令人满意。1.2.3小车避障现状综诉 避障的目标就是没有人的干预下使机器人有目的地移动并完成特定任务,进行特定操作。机器人通过装配的信息获取手段,获得外部环境信息,实现自我定位,判定自身状态,规划并执行下一步的动作。要实现移动机器人更高的智能化,机器人在行走和探索的过程中,避障行为是必不可少的。在行走过程中实现避障行为是非常重要的,它可以避免造成机器人本体的损坏以及重要设备的损坏,使机器人无论在什么环境下都能够正常工作,因此机器人的避障控制系统的成为当今研究的热门课题1。 采用先进、可靠的传感器和计算机技术实现智能机器人的避障研制, 传感器融合技术近年来被引入到了机器人导航研究中,并已取得令人振奋的成果,采用常规传感器导航的移动机器人将成为机器人产业的主要发展方向5。当然,在一些复杂的地理条件下,非视觉传感器的探测范围就不如视觉系统那么完整,目前对于一些高精度的导航还难以胜任,因而开发新型传感器或按照一定融合策略构造传感器阵列以弥补单个传感器的缺陷,以及提出新的融合方法来完善探测的结果,都将是重要的研究方向3。1.2.4智能小车的现状 智能小车作为移动式机器人的一个重要分支,随着机器人研究的深入受到越来越多人的关注。它是计算机控制与电子技术的融合,集传感器探测(光源、障碍物)、单片机自动控制、电机调速等于一体,可以说是计算机、传感器、信息、通讯、导航、人工智能及自动控制等技术的一个综合体,为电子设备智能化提供了很好的实例5。 现今社会智能小车发展很快,从智能玩具到其它各行业都有实质成果。其基本可实现循迹、避障、检测贴片、寻光入库、避崖等基本功能7,这几界的电子设计大赛智能小车又在向声控系统发展。比较出名的飞思卡尔智能小车更是走在前列。我此次的设计主要实现循迹避障这两个功能。根据实际设计制作基于STC89C52单片机智能小车的过程,在智能小车的自动循线、避障、检测、控制、显示等方面提出一些见解。1.3论文研究内容与主要结构1.3.1基于单片机控制的智能循迹避障小车 随着微电子技术的不断发展,单片机不但集成程度越来越高,已可以在一块芯片上同时集成CPU、存储器、定时器计数器、并行和串行接口、看门狗、前置放大器、AD 转换器、DA 转换器等多种电路,而且体积越来越小,功耗越来越低,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统8。这种技术促使机器人技术也有了突飞猛进的发展,目前的机器人技术发展异常迅速,已经出现了各种各式的用于各种用途的机器人了,机器人的设计与制造已经不是很高难度的事情了,已经具有普及性了。 本文设计以STC89C52 单片机作为检测和控制核心。采用红外光电传感器检测路面黑线及障碍物,应用超声波传感器测距,利用单片机控制电动机的转动方向和转速。通过软件编程实现小车的行进、绕障。通过对电路的优化组合,可以最大限度地利用51 单片机的全部资源。P0 口用于连接VCC,P1 口用于传感器的数据采集与中断控制,P2口用于电动机的驱动控制。这样做的优点是:简单有效,降低了总体设计的成本。1.3.2文章主要结构 文章主要包括下面几个内容: 1、综述小车的研究与现状,阐述文章的大致方向 2、对智能小车进行方案总设计,主要包括车体的选择、电驱模块驱动电机的选择、循迹模块和壁障模块传感器的选择控制系统模块和电源模块的选择 3、对小车进行硬件的设计,给出电路图 4、结合自己所学的专业知识,对小车进行软件设计,使得小车能自动的壁障和循迹 5、对小车进行制作安装与调试,对测试的结果进行分析2 方案选型设计2.1车体设计 直接购买的3轮车版,小车为3轮结构 。其中前面两个车轮由前轮电机控制, 在信号控制下前后摆动,来调节小车的前进方向和为小车提供动力。在自然状态下,保持前进。后面1个车轮有轴承,为整个小车提供方向,所以又称后面的轮子为方向轮,驱动的两个轮子为驱动轮。能适应题目中小车准确前进、后退、转弯的要求,而且这种车版一般都价格适中。而自己制作车版成本比较高,且比较粗糙,对于白色基板上的道路面行驶,车身重量以及平衡都要有精确的测量,而且也要控制好小车行驶的路线和转弯的力矩及角度,这些都比较难良好地实现。2.2电机驱动设计2.2.1电机选择 使用直流电机作为电动车的驱动电机,直流电机的控制方法比较简单,只需给电机的两根控制线加上适当的电压即可使电机转动起来,电压越高则电机转速越高。对于直流电机的速度调节,可以采用改变电压的方法,也可采用PWM调速方法。PWM调速就是使加在直流电机两端的电压为方波形式,通过改变方波的占空比实现对电机转速的调节。 虽然采用步进电机有诸多优点,如可以精确的定位,可以实现小车前进路程和位置的精确定位但是步进电机的输出力矩较低,随转速的升高而下降,且在较高转速时会急剧下降,其转速较低,不适用于小车等有一定速度要求的系统。所以最后确定使用直流电机。2.2.2驱动选择 开始时想采用SM6135W电机遥控驱动模块。SM6135W是专为遥控车设计的大规模集成电路。能实现前进、后退、向右、向左、加速五个功能,但是其采用的是编码输入控制,而不是电平控制,这样在程序中实现比较麻烦,而且该电机模块价格比较高,所以放弃。图1 后采用电机驱动芯片L298N(见图1)。L298N是ST公司生产的一种高电压、大电流电机驱动芯片。该芯片采用15脚封装,为单块集成电路,高电压,高电流,四通道驱动,可直接的对电机进行控制,无须隔离电路。对照表1通过单片机的I/O输入改变芯片控制端的电平,即可以对电机进行正反转,停止的操作,非常方便,亦能满足直流减速电机的大电流要求。调试时在依照逻辑关系表,用程序输入对应的码值,能够实现对应的动作。采用功率三极管作为功率放大器的输出控制直流电机。线性型驱动的电路结构和原理简单,加速能力强,采用由达林顿管组成的 H型桥式电路(见图2)17。用单片机控制达林顿管使之工作在占空比可调的开关状态下,精确调整电动机转速。这种电路由于工作在管子的饱和截止模式下,效率非常高,H型桥式电路保证了简单的实现转速和方向的控制,电子管的开关速度很快,稳定性也极强,是一种广泛采用的 PWM调速技术6。EN A(B)IN1(IN3)IN2(IN4)电机运转情况HHL正传HLH反转HIN1(IN3)IN2(IN4)快速停止LXX停止表1 L298N的引脚和输出引脚的逻辑关系 图2 H桥式电路2.2.3H桥式电路工作原理 电路得名于“H桥式驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠。 H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。2.2.4PWM调速技术 这种调速方式有调速特性优良、调整平滑、调速范围广、过载能力大,能承受频繁的负载冲击,还可以实现频繁的无级快速启动、制动和反转等优点。因此决定采用使用功率三极管作为功率放大器的输出控制直流电机。2.3循迹模块 利用光电传感器实现循迹的基本原理2.3.1光电传感器的工作原理 光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的。光电传感器在一般情况下,有三部分构成,它们分为:发送器、接收器和检测电路。 发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。光束不间断地发射,或者改变脉冲宽度。接收器有光电二极管、光电三极管、光电池组成。在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效信号和应用该信号。 此外,光电开关的结构元件中还有发射板和光导纤维。 三角反射板是结构牢固的发射装置。它由很小的三角锥体反射材料组成,能够使光束准确地从反射板中返回,具有实用意义。它可以在与光轴0到25的范围改变发射角,使光束几乎是从一根发射线,经过反射后,还是从这根反射线返回。2.3.2光电传感器的分类和工作方式 1、槽型光电传感器 把一个光发射器和一个接收器面对面地装在一个槽的两侧的是槽形光电。发光器能发出红外光或可见光,在无阻情况下光接收器能收到光。但当被检测物体从槽中通过时,光被遮挡,光电开关便动作。输出一个开关控制信号,切断或接通负载电流,从而完成一次控制动作。槽形开关的检测距离因为受整体结构的限制一般只有几厘米。 2、对射型光电传感器若把发光器和收光器分离开,就可使检测距离加大。由一个发光器和一个收光器组成的光电开关就称为对射分离式光电开关,简称对射式光电开关。它的检测距离可达几米乃至几十米。使用时把发光器和收光器分别装在检测物通过路径的两侧,检测物通过时阻挡光路,收光器就动作输出一个开关控制信号。 3、反光板型光电开关把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式(或反射镜反射式)光电开关。正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号。 4、扩散反射型光电开关它的检测头里也装有一个发光器和一个收光器,但前方没有反光板。正常情况下发光器发出的光收光器是找不到的。当检测物通过时挡住了光,并把光部分反射回来,收光器就收到光信号,输出一个开关信号。2.3.3光电传感器的选择 这里的循迹是指小车在白色地板上循黑线行走,通常采取的方法是红外探测法。 红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。 单片机就是否收到反射回来的红外光为依据确定黑线的位置和小车的行走路线。红外探测器探测距离有限,一般最大不应超过3CM5。 开始时采用发光二极管+光敏电阻,但是该方法缺点明显:易受到外界光源的干扰,有时甚至检测不到黑线,主要是因为可见光的反射效果跟地表的平坦程度、地表材料的反射情况均对检测效果产生直接影响。克服此缺点的方法:采用超高亮度的发光二极管能降低一定的干扰,但这又会增加检测系统的功耗。 后采用脉冲调制的反射式红外发射接收器。由于采用带有交流分量的调制信号,则可大幅度减少外界的干扰;此外红外发射接收管的工作电流取决于平均电流,如果采用占空比小的调制信号,在平均电流不变的情况下,瞬时电流很大(50100mA)(ST-188允许的最大输入电流为50mA),则大大提高了信噪比。此种测试方案反应速度大约在5us。2.4避障模块 探测障碍的最简单的方法是使用超声波传感器,它是利用向目标发射超声波脉冲,计算其往返时间来判定距离的。该方法被广泛应用于移动机器人的研究上。其优点是价格便宜,易于使用,且在10m以内能给出精确的测量。2.4.1超声波测距的原理 超声波是一种在弹性介质中的机械振荡,其频率超过20KHz,分横向振荡和纵向振荡两种,超声波可以在气体、液体及固体中传播,其传播速度不同。它有折射和反射现象,且在传播过程中有衰减。利用超声波的特性,可做成各种超声波传感器,结合不同的电路,可以制成超声波仪器及装置,在通讯、医疗及家电中获得广泛应用7。 作为超声波传感器的材料,主要为压电晶体。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,故它分为发送器和接收器。 通过超声波发射装置发出超声波,根据接收器接到超声波时的时间差就可以知道距离了。这与雷达测距原理相似。 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。(超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2)2.4.2超声波传感器的分类 为了研究和利用超声波,人们已经设计和制造了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电式、磁致伸缩型和电动型等。机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性不相同,因而用途也也不相同。目前,常用的是压电式超声波发生器。压电式超声波发生器实际是利用压电陶瓷晶体的谐振来工作的。超声波发生器的内部结构,有两个压电芯片和一个共振板。当两极外加脉冲信号,其频率等于晶体的固有频率时,压电芯片将会发生共振,并带动共振板振动,便产生超声波。如果两电极问未外加电压,当共振板接收到超声波时,将压迫压电芯片做共振,把机械能转化成电信号,这时就成了超声波接收器。2.4.3超声波测距特点 超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用7。 为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。超声波测距系统,就是为小车了解其前方、左侧和右侧的环境而提供一个运动距离信息8。 由于超声实现方便,技术成熟,成本低,且周围环境对于超声波的影响也不大,所以超声避障成为移动机器人常用的避障方法7。从国内外研究情况来看,超声波装置主要用作测距,通过测量声源与目标物之间的往返传播时间,求得目标物的距离。在有些情况下,超声波传感器是光学系统无可比拟的。超声波传感器的优点主要表现如下10: 1、对于黑暗的环境和物体,超声波传感器几乎不受恶劣环境的影响,仍然能够实时准确的探测障碍物信息,反馈给信息处理设备。 2、和光学传感器相比,超声波传感器不仅可以探测到障碍物的存在,而且能够得到障碍物距机器人的距离,便于机器人做出决策。 3、虽然光传播速度比声音快,但计算机控制器延时和电机响应速度等特点将限制机器人执行任务的速度,因此光速快的优势并不明显。2.4.4超声波模块选择 采用US100超声波模块 US100主要技术参数表2 US100主要参数电气参数US100超声波模块工作电压DC2.4V5.5V静态电流2mA 工作温度-20+70度输出方式电平或UART(跳线帽选择)感应角度小于15度探测距离2cm450cm探测精度0.3cm+1%UART 模式下串口配置波特率9600,起始位1位,停止位1位,数据位8位,无奇偶校验,无流控制US100超声波测距模块可实现04.5m的非接触测距功能,拥有2.45.5V的宽电压输入范围,静态功耗低于2mA,自带温度传感器对测距结果进行校正,同时具有GPI0,串口等多种通信方式,内带看门狗,工作稳定可靠。US100 5pin接口各自的定义从左到右依次编号1.2.3.4.5各自定义1号Pin接VCC电源(2.4V5.5V)2号Pin为UART时接TX端,为电平触发时接Trig端3号Pin位UART时接RX端,为电平触发时接Echo端4号Pin接外部电路的地5号Pin接外部电路的地表3 US100各pin接口定义2.5显示模块 选用LED数码管用作显示2.5.1数码管的结构及工作原理 LED数码管(LED Segment Displays)是由多个发光二极管封装在一起组成“8”字型的器件,引线已在内部连接完成,只需引出它们的各个笔划,公共电极。led数码管常用段数一般为7段有的另加一个小数点,还有一种是类似于3位“+1”型。位数有半位,1,2,3,4,5,6,8,10位等等.,led数码管根据LED的接法不同分为共阴和共阳两类,了解LED的这些特性,对编程是很重要的,因为不同类型的数码管,除了它们的硬件电路有差异外,编程方法也是不同的。共阴和共阳极数码管,它们的发光原理是一样的,只是它们的电源极性不同而已。 LED数码管要正常显示,就要用驱动电路来驱动数码管的各个段码,从而显示出我们要的数位,因此根据LED数码管的驱动方式的不同,可以分为静态式和动态式两类。 A、静态显示驱动: 静态驱动也称直流驱动。静态驱动是指每个数码管的每一个段码都由一个单片机的I/O口进行驱动,或者使用如BCD码而是进位器进行驱动。静态驱动的优点是编程简单,显示亮度高,缺点是占用I/O口多,如驱动5个数码管静态显示则需要5*8=40根I/O口来驱动,要知道一个89S51单片机可用的I/O口才32个。故实际应用时必须增加驱动器进行驱动,增加了硬体电路的复杂性。 B、动态显示驱动: 数码管动态显示介面是单片机中应用最为广泛的一种显示方式之一,动态驱动是将所有数码管的8个显示笔划a,b,c,d,e,f,g,dp的同名端连在一起,另外为每个数码管的公共极COM增加位元选通控制电路,位元选通由各自独立的I/O线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是哪个数码管会显示出字形,取决于单片机对位元选通COM端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位元就显示出字形,没有选通的数码管就不会亮19。 通过分时轮流控制各个LED数码管的COM端,就使各个数码管轮流受控显示,这就是动态驱动。在轮流显示过程中,每位元数码管的点亮时间为12ms,由于人的视觉暂留现象及发光二极体的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示资料,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O口,而且功耗更低。2.5.2数码管的选择 为节省单片机I/O端口,采用四位一体共阴极动态数码管。2.6控制系统模块 考虑选用一片CPLD(如EPM7128LC84-15)作为系统的核心部件,实现控制与处理的功能。CPLD具有速度快、编程容易、资源丰富、开发周期短等优点,可利用VHDL语言进行编写开发。但CPLD在控制上较单片机有较大的劣势。同时,CPLD的处理速度非常快,而小车的行进速度不可能太高,那么对系统处理信息的要求也就不会太高,在这一点上,MCU就已经可以胜任了。若采用该方案,必将在控制上遇到许许多多不必要增加的难题。为此,不采用该种方案,进而提出了其他设想。 结合实际需求采用89C52作为主控制芯片,该芯片有足够的存储空间,可以方便的在线ISP下载程序,能够满足该系统软件的需要,对于本作品系统已经足够,采用该芯片可以比较灵活的选择各个模块控制芯片,能够准确的计算出时间,有很好的实时性。2.6.1单片机的发展 1946年第一台电子计算机诞生至今,依靠微电子技术和半导体技术的进步,从电子管晶体管集成电路大规模集成电路,使得计算机体积更小,功能更强。特别是近20年时间里,计算机技术获得飞速的发展,计算机在工农业,科研,教育,国防和航空航天领域获得了广泛的应用,计算机技术已经是一个国家现代科技水平的重要标志14。 单片机诞生于20世纪70年代,象Fairchild公司研制的F8单片微型计算机。所谓单片机是利用大规模集成电路技术把中央处理单元(Center Processing Unit,也即常称的CPU)和数据存储器(RAM)、程序存储器(ROM)及其他I/O通信口集成在一块芯片上,构成一个最小的计算机系统,而现代的单片机则加上了中断单元,定时单元及A/D转换等更复杂、更完善的电路,使得单片机的功能越来越强大,应用更广泛14。 20世纪70年代,微电子技术正处于发展阶段,集成电路属于中规模发展时期,各种新材料新工艺尚未成熟,单片机仍处在初级的发展阶段,元件集成规模还比较小,功能比较简单,一般均把CPU、RAM有的还包括了一些简单的I/O口集成到芯片上,象Fairchild公司就属于这一类型,它还需配上外围的其他处理电路方才构成完整的计算系统。类似的单片机还有Zilog公司的Z80微处理器。 1976年INTEL公司推出了MCS-48单片机,这个时期的单片机才是真正的8位单片微型计算机,并推向市场。它以体积小,功能全,价格低赢得了广泛的应用,为单片机的发展奠定了基础,成为单片机发展史上重要的里程碑20。 在MCS-48的带领下,其后,各大半导体公司相继研制和发展了自己的单片机,象Zilog公司的Z8系列。到了80年代初,单片机已发展到了高性能阶段,象INTEL公司的MCS-51系列,Motorola公司的6801和6802系列,Rokwell公司的6501及6502系列等等,此外,日本的著名电气公司NEC和HITACHI都相继开发了具有自己特色的专用单片机20。80年代,世界各大公司均竞相研制出品种多功能强的单片机,约有几十个系列,300多个品种,此时的单片机均属于真正的单片化,大多集成了CPU、RAM、ROM、数目繁多的I/O接口、多种中断系统,甚至还有一些带A/D转换器的单片机,功能越来越强大,RAM和ROM的容量也越来越大,寻址空间甚至可达64kB,可以说,单片机发展到了一个新的平台。 单片机经历了SCM、MCU、SOC三大阶段21。 1.SCM即单片微型计算机(Single Chip Microcomputer)阶段,主要是寻求最佳的单片形态嵌入式系统的最佳体系结构。“创新模式”获得成功,奠定了SCM与通用计算机完全不同的发展道路。在开创嵌入式系统独立发展道路上,Intel公司功不可没。 2.MCU即微控制器(Micro Controller Unit)阶段,主要的技术发展方向是:不断扩展满足嵌入式应用时,对象系统要求的各种外围电路与接口电路,突显其对象的智能化控制能力。它所涉及的领域都与对象系统相关,因此,发展MCU的重任不可避免地落在电气、电子技术厂家。从这一角度来看,Intel逐渐淡出MCU的发展也有其客观因素。在发展MCU方面,最著名的厂家当数Philips公司。 Philips公司以其在嵌入式应用方面的巨大优势,将MCS-51从单片微型计算机迅速发展到微控制器。因此,当我们回顾嵌入式系统发展道路时,不要忘记Intel和Philips的历史功绩14。 单片机是嵌入式系统的独立发展之路,向MCU阶段发展的重要因素,就是寻求应用系统在芯片上的最大化解决;因此,专用单片机的发展自然形成了SOC化趋势。随着微电子技术、IC设计、EDA工具的发展,基于SOC的单片机应用系统设计会有较大的发展。因此,对单片机的理解可以从单片微型计算机、单片微控制器延伸到单片应用系统13。2.6.2AT89C52单片机的简单介绍 在众多的单片机系列中,AT89C52是一种低功耗,高性能CMOS8位微控制器,具有8K系列可编程Flash存储器。使用Atmel公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。片上Flash允许程序储存器在系统可编程,也适应于常规编程。在单芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使得AT89C52为众多嵌入式控制应用系统提供高灵活、超高效的解决方案。 AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在线编程)。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。2.7电源模块 在本系统中,需要用到的电源有单片机的5V,L298N芯片的电源5V和电机的电源715V。所以需要对电源的提供必须正确和稳定可靠。 方法1:用9V的锌电源给前、后轮电机供电,然后使用7805稳压管来把高电压稳成5V分别给单片机和电机驱动芯片供电。这种接法比较简单,但小车的电路功耗过大会导致后轮电机动力不足。 方法2:采用双电源。为了确保单片机控制部分和后轮电机驱动的部分的电压不会互相影响,要把单片机的供电和驱动电路分开来,即:用6节干电池7.2V来驱动电机芯片,然后用7805稳压管来稳成5V供给单片机,后轮电机的电源用3V供电,这样有助于消除电机干扰,提高系统的稳定性。 基于以上分析,选择方法2。3 硬件设计3.1总体设计3.1.1小车总体概述 智能小车采用前轮驱动,前轮左右两边各用一个电机驱动,调制前面两个轮子的转速起停从而达到控制转向的目的,后轮是万象轮,起支撑的作用。将循迹光电对管分别装在车体下的左右。当车身下左边的传感器检测到黑线时,主控芯片控制左轮电机停止,车向左修正,当车身下右边传感器检测到黑线时,主控芯片控制右轮电机停止,车向右修正。避障的原理在车身前方装有超声波传感器,当其检测到障碍物时,主控芯片给出信号报警并控制车子倒退、转向,从而避开障碍物。 电路分为电源模块、单片机模块、电机驱动模块、循迹模块、壁障模块。3.1.2小车总体设计框图图3 总体设计框图3.2驱动电路设计 电机驱动采用H桥式驱动电路,L298N内部集成了H桥式驱动电路,从而采用L298N电路来驱动电机。通过单片机给予L298N电路PWM信号来控制小车的速度,起停。 L298N的管脚如图4所示,驱动原理电路图如图5所示。图4 L298N管脚图图5 电机驱动电路3.3信号检测模块电路设计 将单片机用作测控系统时,系统中总要有被测信号输入通道,拾取必要的输入信息。作为测试系统,对被测对象拾取必要的原始参量信号是系统的核心任务,对控制系统来说,对被控对象状态的测试以及对控制条件的监测也是不可缺少的环节。因此,信号检测模块占有重要地位。3.3.1循迹模块信号检测电路 小车循迹原理是小车在画有黑线的白纸 “路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”黑线。在该模块中我采用了简单、应用也比较普遍的检测方法红外探测法。 红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号,再通过LM324作比较器来采集高低电平,从而实现信号的检测(见图6)。图6 红外传感电路3.3.2壁障模块和显示信号检测电路 避障和显示模块都是使用的US100超声波模块作为信号来源,它共有2种工作原理,分为串口和电平触发。 电平触发测距工作原理: 在模块上电前,首先去掉模式选择跳线上的跳线帽,使模块处于电平触发模式。只需要在Trin/TX管脚输入一个10US以上的高电平,系统便可发出8个40KHZ的超声波脉冲,然后检测回波信号。当检测到回波信号后,模块还要进行温度值的测量,然后根据当前温度值对测距结果进行校正,将校正后的结果通过Echo/RX输出。 在此模式下,模块将测距值转化为340M/S时的时间值的2倍,通过Echo端输出一高电平,可根据此高电平的持续时间来计算距离值。即距离值为:(高电平时间*340M/S)/2。 串口触发测距工作原理 在模块上电前,首先插上模式选择跳线上的跳线帽,使模块处于串口触发模式。只需要在Trin/TX管脚输入OX55(波特率9600),系统便可发出8个40KHZ的超声波脉冲,然后检测回波信号。当检测到回波信号后,模块还要进行温度值的测量,然后根据当前温度值对测距结果进行校正,将校正后的结果通过Echo/RX输出。输出的距离值共两个字节,第一个字节是距离的高八位(HData),第二个字节为距离的低八位(LData),单位为毫米。即距离为(HData*256+LData)mm。 超声波电路如图(图7,图8,图9)。图7图8图93.4显示模块电路设计 本设计采用四位一体动态共阴极数码管作为显示器,在小车行驶时显示小车行驶时间和行驶距离。 本设计中采用芯片74HC245作为显示驱动器,245是方向可控的八路缓冲器,主要用于实现数据总线的双向异步通信。为了保护脆弱的主控芯片,通常在主控芯片的并行接口与外部受控设备的并行接口间添加缓冲器。当主控芯片与受控设备之间需要实现双向异步通信时,自然就得选用双向的八路缓冲器了,245就是面向这种需求的,它的管脚如图10所示,使用单片机控制,且用专用驱动芯片控制可以减少对CPU的利用时间,单片机将有更多的时间去完成其他功能。图10 74HC245管脚 该芯片共有20个管脚,管脚B0、B1、B2、B3、B4、B5、B6、B7分别接1000欧电阻后与四位一体动态共阴极的abcdefgdp相连,分别控制各段码和小数点。管脚A0到A7接单片机并行口,通过对单片机对芯片进行控制。管脚AB/BA接电源VCC,管脚CE接地。 该芯片所驱动的显示电路如图11所示图11 集成显示电路图 显示驱动器支持动态显示,其显示功能如表4所示,0000-1001显示从0-9数字,1010是未进位时是小数点清位,1011是进位后加小数点,1100-1111是八段共阴数码管的位选。D3D2D1D0显示000000001100102001130100401015011060111710008100191010清小数点1011加小数点1100a1选通1101a2选通1110a3选通1111a4选通表4 真值表3.5主控电路设计 本模块主要是对采集信号进行分析,同时给出PWM波控制电机速度,起停。以及对数码管进行显示的作用。3.5.1单片机最小系统设计 单片机是小车的控制中心,单片机最小系统的合理设计是小车平稳运行的前提。用AT89C52单片机构成最小应用系统时,只要将单片机接上晶振电路和复位电路再接上ISP下载接口即可。由于集成度的限制,最小应用系统只能用作一些小型的控制单元15。其应用的特点有: (1) 有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论