


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
不等式证明范文 不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。 一、不等式的初等证明方法 1.综合法:由因导果。 2.分析法:执果索因。基本步骤:要证.只需证.,只需证. (1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。 (2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。 3.反证法:正难则反。 4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有: (1)添加或舍去一些项,如: 2)利用基本不等式,如: (3)将分子或分母放大(或缩小): 5.换元法:换元的目的就是减少不等式中变量,以使问题 化难为易、化繁为简,常用的换元有三角换元和代数换元。 6.构造法:通过构造函数、方程、数列、向量或不等式来证明不等式。 证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。 7.数学归纳法:数学归纳法证明不等式在数学归纳法中专门研究。 8.几何法:用数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。 9.函数法:引入一个适当的函数,利用函数的性质达到证明不等式的目的。 10.判别式法:利用二次函数的判别式的特点来证明一些不等式的方法。当a0时,f(x)=ax2+bx+c0(或0).0)。当a0(或0(或0)。 二、部分方法的例题 1.换元法 换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。 注意:在不等式的证明中运用换元法,能把高次变为低次,分式变为整式,无理式变为有理式,能简化证明过程。尤其对含有若干个变元的齐次轮换式或轮换对称式的不等式,通过换元变换形式以揭示内容的实质,可收到事半功倍之效。 2.放缩法 欲证AB,可将B适当放大,即B1B,只需证明AB1。相反,将A适当缩小,即AA1,只需证明A1B即可。 注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。 3.几何法 数形结合来研究问题是数学中常用的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽淮南市招考村级后备干部81人模拟试卷有答案详解
- 2025年新工艺生产的过氧化异丙苯(DCP)项目申请报告
- 爱心午餐:传递温暖的社会实践演讲稿6篇
- 2025金华金开招商招才服务集团有限公司招聘5人考前自测高频考点模拟试题附答案详解(考试直接用)
- 特定领域特定领域承诺书9篇
- 2025年济柴动力有限公司春季高校毕业生招聘(10人)考前自测高频考点模拟试题(含答案详解)
- 山间清泉流淌的画面描写10篇
- 2025广西百色西林县地方志编纂服务中心公开招聘1人考前自测高频考点模拟试题及答案详解(典优)
- 山西省阳泉市2024-2025学年高一下学期期末地理试题(解析版)
- 2025-2026学年四川省巴中市南江县某中学高二上学期入学考试英语试卷(解析版)
- 2025年广西专业技术人员继续教育公需科目试题(附答案)
- 从“ST昆机”审计意见购买剖析上市公司审计乱象与治理路径
- 江苏省低空空域协同管理办法(试行)
- 27.1《反比例函数》课件冀教版数学九年级上册
- DL-T5850-2024电气装置安装工程高压电器施工及验收规范
- 装修公司培训的课件
- 北美压铸协会压铸标准(中文)
- 青马工程考试题库及答案
- QGDW1738-2020配电网规划设计技术导修订征求意见稿
- 2025至2030年中国汽车资讯平台行业市场现状调查及投资趋势研判报告
- 医院人事编制管理制度
评论
0/150
提交评论