




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 所有可能出现的基本事件只有有限个 有限性 2 每个基本事件出现的可能性相等 等可能性 我们将具有这两个特点的概率模型称为古典概率模型 简称古典概型 复习 1 古典概型 2 古典概型的概率公式 P A A包含的基本事件的个数 基本事件的总数 复习题 在0至10中 任意取出一整数 则该整数小于5的概率 3 3 1几何概型 问题2 转盘游戏 图中有两个转盘 甲乙两人玩转盘游戏 规定当指针指向B区域时 甲获胜 否则乙获胜 在两种情况下分别求甲获胜的概率是多少 问题1 在0至10中 任意取出一实数 则该数小于5的概率 定义 如果每个事件发生的概率只与构成该事件区域的长度 面积或体积 成比例 则称这样的概率模型为几何概率模型 geometricmodelsofprobability 简称几何概型 特征 1 无限性 基本事件的个数无限 2 等可能性 基本事件出现的可能性相同 记为 几何概型的概率公式 有限性 等可能性 几何概型 古典概型 等可能性 无限性 判断以下各题的是何种概率模型 并求相应概率 1 在集合A 0 1 2 3 4 5 6 7 8 9 中任取一个元素 则的概率为 2 已知点O 0 0 点M 60 0 在线段OM上任取一点P 则的概率为 1 为古典概率模型 P 7 10 2 为几何概率模型 P 1 6是与长度有关的几何概型问题 口答 1 长度问题 取一根长度为3m的绳子 拉直后在任意位置剪断 那么剪得两段的长度都不小于1m的概率有多大 基础训练 解 由题意可得 故由几何概型的知识可知 事件A发生的概率为 设 剪得两段绳长都不小于1m 为事件A 则把线段三等分 当剪断中间一段时 事件A发生 3m 1m 1m 2 面积问题 如右下图所示的单位圆 假设你在每个图形上随机撒一粒黄豆 分别计算它落到阴影部分的概率 解 由题意可得 从而 基本事件的全体对应的几何区域为面积为 的单位圆事件A对应的几何区域为第一个图形的阴影部分面积 事件B对应的几何区域为第二个图形的阴影部分面积 故几何概型的知识可知 事件A B发生的概率分别为 设 豆子落在第一个图形的阴影部分 为事件A 豆子落在第二个图形的阴影部分 为事件B 思考 在单位圆内有一点A 现在随机向圆内扔一颗小豆子 1 求小豆子落点正好为点A的概率 2 求小豆子落点不为点A的概率 结论 若A是不可能事件 则P A 0 反之不成立即 概率为0的事件不一定是不可能事件 若A是必然事件 则P A 1 反之不成立即 概率为1的事件不一定是必然事件 A 链接 3 体积问题 有一杯1升的水 其中含有1个细菌 用一个小杯从这杯水中取出0 1升 求小杯水中含有这个细菌的概率 解 由题意可得 则 基本事件的全体对应的几何区域为体积为1升的水事件A对应的几何区域为体积为0 1升的水 故由几何概型的知识可知 事件A发生的概率为 设 取出的0 1升水中含有细菌 为事件A 1 某人午觉醒来 发现表停了 他打开收音机 想听电台报时 求他等待的时间不多于10分钟的概率 电台整点报时 解 设A 等待的时间不多于10分钟 事件A恰好是打开收音机的时刻位于 50 60 内因此由几何概型的求概率公式得 P A 60 50 60 1 6 等待报时的时间不超过10分钟 的概率为1 6 提升训练 析 如图所示 这是长度型几何概型问题 当硬币中心落在阴影区域时 硬币不与任何一条平行线相碰 故由几何概型的知识可知所求概率为 2 平面上有一组平行线 且相邻平行线间的距离为3cm 把一枚半径为1cm的硬币任意平抛在这个平面上 求硬币不与任何一条平行线碰的概率 课堂小结 1 几何概型的特征 无限性 等可能性 可区域化2 几何概型主要用于解决与测度有关的题目3 注意理解几何概型与古典概型的区别 4 如何将实际问题转化为几何概型的问题 利用几何概型公式求解 1 在区间 1 3 上任取一数 则这个数大于1 5的概率为 A 0 25B 0 5C 0 6D 0 75 D 当堂检测 A B C D 无法计算 B 2 如图所示 边长为2的正方形中有一封闭曲线围成的阴影区域 在正方形中随机撒一粒豆子 它落在阴影区域内的概率为则阴影区域的面积为 3 在Rt ABC中 A 30 过直角顶点C作射线CM交线段AB于M 求 AM AC 的概率 1 6 析 如图所示 因为过一点作射线是均匀的 因而应把在 ACB内作射线CM看做是等可能的 基本事件是射线CM落在 ACB内任一处 使 AM AC 的概率只与 BCC 的大小有关 这符合几何概型的条件 1 6 检测3 题组一 与长度有关的几何概型 1 当你到一个红绿灯路口时 红灯的时间为30秒 黄灯的时间为5秒 绿灯的时间为45秒 你看到黄灯的概率是多少 2 在单位圆 O的一条直径MN上随机地取一点Q 过点Q作弦与MN垂直且弦的长度超过1的概率是 题组二 与角度有关的几何概型 变1 在等腰直角 ABC中 在斜边AB上任取一点M 求使 ACM为钝角三角形的概率 变2 在等腰直角 ABC中 在斜边AB上任取一点M 求AM小于AC的概率 在等腰直角 ABC中 过直角顶点C任作一条射线L与斜边AB交于点M 求AM小于AC的概率 题组三 与体积有关的几何概型 1 已知棱长为2的正方体 内切球O 若在正方体内任取一点 则这一点不在球内的概率为 2 用橡皮泥做成一个直径为6cm的小球 假设橡皮泥中混入了一个很小的沙砾 试求这个沙砾距离球心不小于1cm的概率 例2 假设你家订了一份报纸 送报人可能在早上6 30 7 30之间把报纸送到你家 你父亲离开家去工作的时间在早上7 00 8 00之间 问你父亲在离开家前能得到报纸 称为事件A 的概率是多少 问题1 如果用X表示报纸送到时间 用Y表示父亲离家时间 请问X与Y的取值范围分别是什么 问题2 父亲要想在离开家之前拿到报纸 请问x与y除了要满足上述范围之外 还要满足什么关系 例2 假设你家订了一份报纸 送报人可能在早上6 30 7 30之间把报纸送到你家 你父亲离开家去工作的时间在早上7 00 8 00之间 问你父亲在离开家前能得到报纸 称为事件A 的概率是多少 问题3 这是一个几何概型吗 那么事件A的概率与什么有关系 长度 面积 还是体积 问题4 怎么求总区域面积 怎么求事件A包含的区域面积 我们画一个与x y有关系的图像 例2 假设你家订了一份报纸 送报人可能在早上6 30 7 30之间把报纸送到你家 你父亲离开家去工作的时间在早上7 00 8 00之间 问你父亲在离开家前能得到报纸 称为事件A 的概率是多少 解 设送报人到达的时间为x 父亲离开家的时间为y 试验的全部结果构成的区域为正方形ABCD 事件A包含的区域为阴影部分 S阴影部分 这是一个几何概型 则 P A 数学来源于生活 也用生活 谢谢 3 3 2几何概型 普通高中课程标准实验教科书数学 必修3 第二课时 复习回顾 1 古典概型与几何概型的区别 相同 两者基本事件的发生都是等可能的 不同 古典概型要求基本事件有有限个 几何概型要求基本事件有无限多个 2 古典 几何概型的概率公式 3 古典 几何概型问题的概率的求解方法 EX1 已知 公共汽车在0 5分钟内随机地到达车站 求汽车在1 3分钟之间到达的概率 分析 将0 5分钟这段时间看作是一段长度为5个单位长度的线段 则1 3分钟是这一线段中的2个单位长度 解 设 汽车在1 3分钟之间到达 为事件A 则 答 汽车在1 3分钟之间到达 的概率为 EX2 有一杯1升的水 其中含有1个细菌 用一个小杯从这杯水中取出0 1升 求小杯水中含有这个细菌的概率 解 记 小杯水中含有这个细菌 为事件A 则事件A的概率只与取出的水的体积有关 符合几何概型的条件 由几何概型的概率的公式 得 答 小杯水中含有这个细菌的概率为0 1 EX3 一张方桌的图案如图所示 将一颗豆子随机地扔到桌面上 假设豆子不落在线上 求下列事件的概率 1 豆子落在红色区域 2 豆子落在黄色区域 3 豆子落在绿色区域 4 豆子落在红色或绿色区域 5 豆子落在黄色或绿色区域 问题1 图中有两个转盘 甲乙两人玩转盘游戏 规定当指针指向B区域时 甲获胜 否则乙获胜 在两种情况下分别求甲获胜的概率是多少 事实上 甲获胜的概率与黄色所在扇形区域的圆弧的长度有关 而与黄色所在区域的位置无关 因为转转盘时 指针指向圆弧上哪一点都是等可能的 不管这些区域是相邻 还是不相邻 甲获胜的概率是不变的 若把转盘的圆周的长度设为1 则以转盘 1 为游戏工具时 以转盘 2 为游戏工具时 分析 上述问题中 基本事件有无限多个 类似于古典概型的 等可能性 还存在 但不能用古典概型的方法求解 几何概型的定义 重申与回顾 如果每个事件发生的概率只与构成该事件区域的长度 面积或体积 成比例 则称这样的概率模型为几何概率模型 简称为几何概型 几何概型的特点 1 试验中所有可能出现的结果 基本事件 有无限多个 2 每个基本事件出现的可能性相等 在几何概型中 事件A的概率的计算公式如下 1 如果在转盘上 区域B缩小为一个单点 那么甲获胜的概率是多少 问题2 图中有两个转盘 甲乙两人玩转盘游戏 规定当指针指向B区域时 甲获胜 否则乙获胜 在两种情况下分别求甲获胜的概率是多少 构成事件 甲获胜 的区域长度是一个单点的长度0 所以P 甲获胜 0 2 如果在转盘上 区域B扩大为整个转盘扣除一个单点 那么甲获胜的概率是多少 构成事件 甲获胜 的区域长度是圆周的长度减去一个单点的长度0 所以P 甲获胜 1 归纳 1 概率为0的事件不一定是不可能事件 2 概率为1的事件不一定是必然事件 示例1某人午觉醒来 发现表停了 他打开收音机 想听电台报时 求他等待的时间不多于10分钟的概率 分析 假设他在0 60分钟之间任何一个时刻打开收音机是等可能的 但0 60之间有无穷个时刻 可以通过几何概型的求概率公式得到事件发生的概率 又因为电台每隔1小时报时一次 他在0 60之间任何一个时刻打开收音机是等可能的 所以他在哪个时间段打开收音机的概率只与该时间段的长度有关 而与该时间段的位置无关 这符合几何概型的条件 解 设事件A 等待的时间不多于10分钟 事件A恰好是打开收音机的时刻位于 50 60 时间段内 因此由几何概型的求概率的公式得答 等待的时间不超过10分钟 的概率为 示例1某人午觉醒来 发现表停了 他打开收音机 想听电台报时 求他等待的时间不多于10分钟的概率 练习4 取一根长为3米的绳子 拉直后在任意位置剪断 那么剪得两段的长都不少于1米的概率有多大 解 如上图 记 剪得两段绳子长都不小于1m 为事件A 把绳子三等分 于是当剪断位置处在中间一段上时 事件A发生 由于中间一段的长度等于绳子长的三分之一 所以事件A发生的概率P A 1 3 3m 1m 1m 示例2已知 等腰直角三角形ABC中 在斜边AB上任取一点M 求AM小于AC的概率 分析 由点M随机地落在线段AB上 则线段AB为区域D 当点M位于图中的线段AC 上时 则AM AC 故线段AC 即为区域d 解 在AB上截取AC AC 则P AM AC P AM AC 答 AM小于AC的概率为 示例3 会面问题 已知甲乙二人约定在12点到5点之间在某地会面 先到者等一个小时后即离去 设二人在这段时间内的各时刻到达是等可能的 且二人互不影响 求二人能会面的概率 解 设以X Y分别表示甲 乙二人到达的时刻 则有 即点M应落在图中的阴影部分 所有的点构成一个正方形 M X Y 二人会面的条件是 记 两人会面 为事件A 思考题 甲乙两人约定在6时到7时之间在某处会面 并约定先到者应等候另一个人一刻钟 到时即可离去 求两人能会面的概率 示例2 假设您家订了一份报纸 送报人可能在早上6 30 7 30之间把报纸送到你家 你父亲离开家去工作的时间在早上7 00 8 00之间 问你父亲在离开家前能得到报纸 称为事件A 的概率是多少 解 以横坐标X表示报纸送到时间 以纵坐标Y表示父亲离家时间建立平面直角坐标系 父亲在离开家前能得到报纸的事件构成区域是 由于随机试验落在方形区域内任何一点是等可能的 所以符合几何概型的条件 根据题意 只要点落到阴影部分 就表示父亲在离开家前能得到报纸 即事件A发生 所以 答 父亲在离开家前能得到报纸的概率是 练习4 在半径为1的圆上随机地取两点 连成一条线 则其长超过圆内等边三角形的边长的概率是多少 B C D E 0 解 记事件A 弦长超过圆内接等边三角形的边长 取圆内接等边三角形BCD的顶点B为弦的一个端点 当另一点在劣弧CD上时 BE BC 而弧CD的长度是圆周长的三分之一 所以可用几何概型求解 有 答 弦长超过圆内接等边三角形的边长 的概率为 抛阶砖 是国外游乐场的典型游戏之一 参与者只须将手上的 金币 设 金币 的半径为r 抛向离身边若干距离的阶砖平面上 抛出的 金币 若恰好落在任何一个阶砖 边长为a的正方形 的范围内 不与阶砖相连的线重叠 便可获奖 百味探究题 抛阶砖游戏 玩抛阶砖游戏的人 一般需换购代用 金币 来参加游戏 那么要问 参加者获奖的概率有多大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- XX学校情绪管理主题班会你可以生气但别越想越气
- 白酒行业市场前景及投资研究报告:深度调整期白酒底部机会
- 高一细胞核课件
- 高一物理必修课件
- 高一化学全套讲解课件
- 离婚后财产清算及债务承担补充合同
- 石家庄租车合同车辆使用过程中责任归属界定
- 《婚姻裂痕小说章节:情感纠纷离婚协议》
- 离婚协议书范例:财产分割与子女监护权协议样板
- 离婚协议书样本:车辆分割与子女抚养赡养费支付
- T-CFA 030501-2020 铸造企业生产能力核算方法
- 当代中国外交(外交学院)知到智慧树章节测试课后答案2024年秋外交学院
- 护理工作中的冲突与管理
- 北京地区建筑地基基础勘察设计准则
- 《社区调查报告》课件
- 2025-2025学年外研版七年级英语上册教学计划
- 《胸腔穿刺术》课件
- 《人才选用育留》课件
- 农村土地使用权转让协议书
- 任务1 混合动力汽车动力系统基本组成与原理
- 富血小板血浆(PRP)临床实践与病例分享课件
评论
0/150
提交评论