已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
84.1平面考点学习目标核心素养平面的概念了解平面的概念,会用图形与字母表示平面直观想象点、线、面的位置关系能用符号语言描述空间中的点、直线、平面之间的位置关系直观想象三个基本事实及推论能用图形、文字、符号三种语言描述三个基本事实,理解三个基本事实的地位与作用直观想象、逻辑推理 问题导学预习教材P124P127的内容,思考以下问题:1教材中是如何定义平面的?2平面的表示方法有哪些?3点、线、面之间有哪些关系?如何用符号表示?4三个基本事实及推论的内容是什么?各有什么作用?1平面(1)平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的平面是向四周无限延展的(2)平面的画法我们常用矩形的直观图,即平行四边形表示平面当水平放置时,常把平行四边形的一边画成横向;当平面竖直放置时,常把平行四边形的一边画成竖向(3)平面的表示方法我们常用希腊字母,等表示平面,如平面、平面、平面等,并将它写在代表平面的平行四边形的一个角内;也可以用代表平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称如图中的平面,也可以表示为平面ABCD、平面AC或者平面BD名师点拨 (1)平面和点、直线一样,是只描述而不加定义的原始概念,不能进行度量(2)平面无厚薄、无大小,是无限延展的2点、线、面之间的关系及符号表示A是点,l,m是直线,是平面文字语言符号语言图形语言A在l上AlA在l外AlA在内AA在外Al在内ll在外ll,m相交于AlmAl,相交于AlA,相交于ll名师点拨 从集合的角度理解点、线、面之间的关系(1)直线可以看成无数个点组成的集合,故点与直线的关系是元素与集合的关系,用“”或“ ”表示(2)平面也可以看成点集,故点与平面的关系也是元素与集合的关系,用“”或“ ”表示(3)直线与平面都是点集,它们之间的关系可看成集合与集合的关系,故用“”或“”表示3平面的性质基本事实文字语言图形语言符号语言基本事实1过不在一条直线上的三个点,有且只有一个平面A,B,C三点不共线存在唯一的平面使A,B,C基本事实2如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内Al,Bl,且A,Bl基本事实3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P,且Pl,且Pl名师点拨 在画两个相交平面时,如果其中一个平面的一部分被另一个平面挡住,通常把被挡住的部分画成虚线或不画,这样可使画出的图形立体感更强一些如下图,图所示:4平面性质的三个推论推论1经过一条直线和这条直线外一点,有且只有一个平面如图(1)推论2经过两条相交直线,有且只有一个平面如图(2)推论3经过两条平行直线,有且只有一个平面如图(3) 判断(正确的打“”,错误的打“”)(1)我们常用平行四边形表示平面,所以平行四边形就是一个平面()(2)22个平面重叠起来要比10个平面重叠起来厚一些()(3)直线a与直线b相交于点A,可用符号表示为abA.()(4)平面ABCD的面积为100 m2.()(5)过三点A,B,C有且只有一个平面()答案:(1)(2)(3)(4)(5) 若一直线a在平面内,则正确的图形是()解析:选A.选项B,C,D中直线a在平面外,选项A中直线a在平面内 如图所示,下列符号表示错误的是()AlBPlCl DP解析:选A.观察图知:Pl,P,l,则l是错误的 下面是一些命题的叙述语(A,B表示点,a表示直线,表示平面),其中命题和叙述方法都正确的是()A因为A,B,所以ABB因为a,a,所以aC因为Aa,a,所以AD因为Aa,a,所以A解析:选C.对于A,直线AB在平面内,应为AB,故A错误;对于B,直线a在平面,内,应为a,a,故B错误;对于C,因为Aa,a,所以A,故C正确;对于D,Aa,a,有可能A,故D错误故选C. 已知如图,试用适当的符号表示下列点、直线和平面之间的关系:(1)点C与平面:_(2)点A与平面:_(3)直线AB与平面:_(4)直线CD与平面:_(5)平面与平面:_答案:(1)C(2)A(3)ABB(4)CD(5)BD图形、文字、符号语言的相互转化(1)用符号语言表示下面的语句,并画出图形平面ABD与平面BDC交于BD,平面ABC与平面ADC交于AC.(2)将下面用符号语言表示的关系用文字语言予以叙述,并用图形语言予以表示l,Al,AB,AC.【解】(1)符号语言表示:平面ABD平面BDCBD,平面ABC平面ADCAC.用图形表示如图所示(2)文字语言叙述为:点A在平面与平面的交线l上,直线AB,AC分别在平面,内,图形语言表示如图所示三种语言的转换方法(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言叙述,再用符号语言表示(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别 1根据图形用符号表示下列点、直线、平面之间的关系(1)点P与直线AB;(2)点C与直线AB;(3)点M与平面AC;(4)点A1与平面AC;(5)直线AB与直线BC;(6)直线AB与平面AC;(7)平面A1B与平面AC.解:(1)点P直线AB.(2)点C直线AB.(3)点M平面AC.(4)点A1平面AC.(5)直线AB直线BC点B.(6)直线AB平面AC.(7)平面A1B平面AC直线AB.2根据下列条件画出图形:平面平面直线AB,直线a,直线b,aAB,bAB.解:图形如图所示点、线共面问题证明两两相交且不共点的三条直线在同一平面内【解】已知:如图所示,l1l2A,l2l3B,l1l3C.求证:直线l1,l2,l3在同一平面内证明:法一:(纳入平面法)因为l1l2A,所以l1和l2确定一个平面.因为l2l3B,所以Bl2.又因为l2,所以B.同理可证C.又因为Bl3,Cl3,所以l3.所以直线l1,l2,l3在同一平面内法二:(辅助平面法)因为l1l2A,所以l1,l2确定一个平面.因为l2l3B,所以l2,l3确定一个平面.因为Al2,l2,所以A.因为Al2,l2,所以A.同理可证B,B,C,C.所以不共线的三个点A,B,C既在平面内,又在平面内所以平面和重合,即直线l1,l2,l3在同一平面内证明点、线共面的常用方法(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内(2)辅助平面法:先证明有关的点、线确定平面,再证明其余元素确定平面,最后证明平面,重合 已知直线ab,直线l与a,b都相交,求证:过a,b,l有且只有一个平面证明:如图所示由已知ab,所以过a,b有且只有一个平面.设alA,blB,所以A,B,且Al,Bl,所以l.即过a,b,l有且只有一个平面三点共线、三线共点问题如图所示,在正方体ABCDA1B1C1D1中,E、F分别为AB、AA1的中点求证:CE,D1F,DA三线交于一点【证明】连接EF,D1C,A1B,因为E为AB的中点,F为AA1的中点,所以EFA1B.又因为A1BD1C,所以EFD1C,所以E,F,D1,C四点共面,可设D1FCEP.又D1F平面A1D1DA,CE平面ABCD,所以点P为平面A1D1DA与平面ABCD的公共点又因为平面A1D1DA平面ABCDDA,所以据基本事实3可得PDA,即CE,D1F,DA三线交于一点变条件、变问法若将本例条件中的“E,F分别为AB,AA1的中点”改成“E,F分别为AB,AA1上的点,且D1FCEM”,求证:点D、A、M三点共线证明:因为D1FCEM,且D1F平面A1D1DA,所以M平面A1D1DA,同理M平面BCDA,从而M在两个平面的交线上,因为平面A1D1DA平面BCDAAD,所以MAD成立所以点D、A、M三点共线 1如图,已知平面,且l,设梯形ABCD中,ADBC,且AB,CD.求证:AB,CD,l共点证明:因为梯形ABCD中,ADBC,所以AB,CD是梯形ABCD的两腰,所以AB,CD必定相交于一点,如图,设ABCDM.又因为AB,CD,所以M,且M,又因为l,所以Ml.即AB,CD,l共点2如图,在四边形ABCD中,已知ABCD,直线AB,BC,AD,DC分别与平面相交于点E,G,H,F.求证:E,F,G,H四点必定共线证明:因为ABCD,所以AB,CD确定一个平面(即平面ABCD),又因为ABE,AB,所以E,E,即E为平面与的一个公共点同理可证F,G,H均为平面与的公共点,两个平面有公共点,它们有且只有一条通过公共点的公共直线,所以E,F,G,H四点必定共线1能确定一个平面的条件是()A空间三个点B一个点和一条直线C无数个点 D两条相交直线解析:选D.不在同一条直线上的三个点可确定一个平面,A,B,C条件不能保证有不在同一条直线上的三个点,故不正确2经过同一条直线上的3个点的平面()A有且只有一个 B有且只有3个C有无数个 D不存在解析:选C.经过共线3个点的平面有无数个,比如:课本中每一页都过共线的三点3如果直线a平面,直线b平面,Ma,Nb,Ml,Nl,则()Al BlClM DlN解析:选A.因为Ma,a,所以M,同理,N,又Ml,Nl,故l.4如果两个平面有一个公共点,那么这两个平面()A没有其他公共点 B仅有这一个公共点C仅有两个公共点 D有无数个公共点解析:选D.根据基本事实3可知,两个不重合的平面若有一个公共点,则这两个平面有且只有一条经过该点的公共直线5说明语句“l,mA,Al”表示的点、线、面的位置关系,并画出图形解:直线l在平面 内,直线m与平面相交于点A,且点A不在直线l上,图形如图所示 A基础达标1下列说法中正确的是()A三点确定一个平面B四边形一定是平面图形C梯形一定是平面图形D两个不同平面和有不在同一条直线上的三个公共点解析:选C.不共线的三点确定一个平面,故A不正确;四边形有时指空间四边形,故B不正确;梯形的上底和下底平行,可以确定一个平面,故C正确;两个平面如果相交,一定有一条交线,所有这两个平面的公共点都在这条交线上,故D不正确,故选C.2给出以下四个命题:不共面的四点中,其中任意三点不共线;若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;若直线a,b共面,直线a,c共面,则直线b,c共面;依次首尾相接的四条线段必共面其中正确命题的个数是()A0B1C2 D3解析:选B.假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以正确;如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;显然不正确;不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形3已知,为平面,A,B,M,N为点,a为直线,下列推理错误的是()AAa,A,Ba,BaBM,M,N,NMNCA,AADA,B,M,A,B,M,且A,B,M不共线,重合解析:选C.选项C中,与有公共点A,则它们有过点A的一条交线,而不是点A,故C错4在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则()AP一定在直线BD上BP一定在直线AC上CP在直线AC或BD上DP既不在直线BD上,也不在AC上解析:选B.由题意知GH平面ADC,GH,EF交于一点P,所以P平面ADC.同理,P平面ABC.因为平面ABC平面ADCAC,由基本事实3可知点P一定在直线AC上5下列各图均是正六棱柱,P,Q,R,S分别是所在棱的中点,这四个点不共面的图形是()解析:选D.在选项A,B,C中,由棱柱、正六边形、中位线的性质,知均有PSQR,即在此三个图形中P,Q,R,S共面,故选D.6设平面与平面相交于l,直线a,直线b,abM,则M_l.解析:因为abM,a,b,所以M,M.又因为l,所以Ml.答案:7已知空间四点中无任何三点共线,那么这四点可以确定平面的个数是_解析:其中三个点可确定唯一的平面,当第四个点在此平面内时,可确定1个平面,当第四个点不在此平面内时,则可确定4个平面答案:1或48看图填空:(1)平面AB1平面A1C1_;(2)平面A1C1CA平面AC_答案:A1B1AC9按照给出的要求,完成图中两个相交平面的作图,图中所给线段AB分别是两个平面的交线解:以AB为其中一边,分别画出来表示平面的平行四边形如图10已知空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且CGBC,CHDC.求证:(1)E,F,G,H四点共面;(2)直线FH,EG,AC共点证明:(1)连接EF,GH.因为E,F分别是AB,AD的中点,所以EFBD,因为G,H分别是BC,CD上的点,且CGBC,CHDC.所以GHBD,所以EFGH,所以E,F,G,H四点共面(2)因为E,F分别是AB,AD的中点,所以EFBD,因为G,H分别是BC,CD上的点,且CGBC,CHDC.所以GHBD,所以EFGH,且EFGH,所以四边形EFHG是梯形,设两腰EG,FH相交于一点T.因为EG平面ABC,FH平面ACD,所以T平面ABC,且T平面ACD,又平面ABC平面ACDAC,所以TAC,即直线EG,FH,AC相交于一点T.B能力提升11空间四点A,B,C,D共面但不共线,那么这四点中()A必有三点共线 B必有三点不共线C至少有三点共线 D不可能有三点共线解析:选B.若ABCD,则AB,CD共面,但A,B,C,D任何三点都不共线,故排除A,C;若直线l与直线外一点A在同一平面内,且B,C,D三点在直线l上,所以排除D.故选B.12如图,平面平面l,A、B,C,Cl,直线ABlD,过A、B、C三点确定的平面为,则平面、的交线必过()A点A B点BC点C,但不过点D D点C和点D解析:选D.根据基本事实判定点C和点D既在平面内又在平面内,故在与的交线上故选D.13在正方体ABCDA1B1C1D1中,M,N分别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建南平政和县发展改革和科技局招聘工作人员1人笔试考试参考题库及答案解析
- 2025上海本科生招生办公室招聘图书资料人员1人笔试考试参考试题及答案解析
- 2025招商银行唐山分行社会招聘(岗位新增)笔试考试备考试题及答案解析
- 2025西南交通大学医院招聘3人笔试考试参考题库及答案解析
- 2025年河北廊坊燕京职业技术学院公开选聘专任教师20名考试笔试备考试题及答案解析
- 2025河北承德市公安局公开招聘警务辅助人员70名考试笔试备考题库及答案解析
- 2025年黔西南州晴隆县辅警招聘考试题库附答案解析
- 2025年滁州市来安县保安员招聘考试题库附答案解析
- 四川省公安厅所属事业单位2025年公开考核招聘工作人员笔试考试参考试题及答案解析
- 2025年湖南省长沙市长沙县辅警招聘考试题库附答案解析
- 学校熟食配餐合同范本
- 犀牛入门基础教程让您在短时间内熟悉犀牛软件
- 脱硫和脱硝设备检修规程
- 2025-2030中国铷/铯及其化合物行业市场现状分析及竞争格局与投资发展研究报告
- 2024-2025学年新教材高考数学 第2章 平面解析几何 7.1 抛物线的标准方程教学实录 新人教B版选择性必修第一册
- 铁路建设中的施工与居民协调措施
- 托利多GPro-500-气体分析
- 车辆矿石运输合同范本
- 浙江省杭州市城区杭州天地实验小学2025届数学三上期末学业质量监测试题含解析
- 《建筑节能工程施工质量验收规程》(DGJ08-113-2017)
- 司法鉴定概论-课后练习参考答案
评论
0/150
提交评论