




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学与信息科学学院 高中数学教材分析课程设计 教育科学学院课程设计制定人:潘超 审核人:赵思林课程名称高中数学教材分析任课教师潘 超专 业班 级2013级1班姓 名学 号 2015年12月填 写 须 知1、本课程设计适用于数学与信息科学学院师范专业的教育类专业课程的考核,并且符合教学大纲和考试大纲要求,主要体现学生对课程的理解和实践操作情况。2、课程设计根据所分析的内容可附带教材内容以及收集的教材分析材料等(复印材料、图片等)。纸张不够可附页。3、学生完成课程设计后,由任课教师根据学生完成材料评定成绩,占本门课程总成绩的70%。4、此表由数学与信息科学学院存档。高中数学教材分析课程设计要求一、选题要求 自选普通高中课程标准实验教科书数学(人民教育出版社教科书A版必修15)中某一课题开展教材分析。要求所选教科书内容具有典型性,为1-2学时容量。二、分析内容与要求1、本节在教材中的地位和作用(1)分析课程标准对本节内容的要求;(2)分析本节内容,包括所含的知识点、方法以及结构特点等,重点对核心概念和重要方法进行分析,说明你是如何理解这些概念或方法的;(3)分析本节内容在高中数学、整册教材或本单元教材中的地位和作用。2、 教学目标分析(1) 根据教材内容分析确定“三维”教学目标;(2)对教学目标进行解析,说明实现教学目标的方法。(2) 教学目标具有准确性、层次性、简洁性和可操作性。3、 教学重点分析分析教材的教学重点和确定的依据。结合教材内容充分挖掘编者意图,说明教材是如何突出教学重点的。4、 教学难点分析分析教材的教学难点和确定的依据。结合学生情况及教材内容充分挖掘编者意图,说明教材是如何突破教学难点的。5、教学设计在教材分析的基础上,进行教学设计,提出课堂实施中的一些策略,重点说明对教材的处理和教学过程的设计,并有条理的说明注意事项。(1) 整体评价教材编写的特点,说明编者的一些主要意图;(2) 提出教材处理的意见和建议;(3) 说明教学过程的设计,结合教材内容说明教学环节的安排,活动的组织,例题、习题的设计,教学方法的使用,以及一些重要的课堂提问等,与之前的教学目标、教学重点、难点内容相对照。三、格式要求1、字体要求:全文采用字体:楷体_GB2312,标题和提纲加粗,其余文字不加粗。2、 字号要求:标题采用小二号字体,提纲采用四号字体,正文采用小四号字体。3、 段略要求:正文首行缩进,段前0.5磅,行间距1.5倍。公式采用公式编辑器编辑,居中排版,图片尽可能用Word绘制,居中排版,图表全文按序编号。4、参考文献:列出本课程设计的参考文献,引用文献在正文中按顺序逐一标注。格式如下:1 汤炳兴,叶红.初中数学教学案编写的理念、框架与过程J.数学通报,2012,51(1):12-15.2 王新民.数学学案及其设计M.北京:科学出版社,2011.四、其它要求1、结合高中数学教学实际进行教材分析,体现研究性,对高中数学教学具有一定指导性。2、撰写内容具有原创性,严禁抄袭。若有雷同,作不及格处理。3、提交打印稿和电子文档。评分表内容满分(分)得分(分)教材的地位和作用10教学目标10教学重点10教学难点10教学设计30总分(70分)221直线与平面平行的判定教材分析及教学设计1、本节在教材中的地位和作用(1)分析课程标准对本节内容的要求本节教材选自人教A版数学必修第二章第一节,直线与平面平行的判定是点、线、面的位置关系的重要组成部分,容纳了高中数学中的很多数学思想。按照普通高中数学课程标准(实验)要求,本节淡化了几何论证的要求,遵循“直观感知,操作确认,思辨论证,度量计算”的认知过程展开,让学生经历“将空间问题平面化”的降维过程,体会化归与转化数学思想【1】。(2)分析本节内容在学习本节之前,学生已经学习了柱、锥、台、球等简单几何体和平面的基本性质,但基于数学本身的抽象性和概括性,要求学生对空间图形的认识不仅停留在直观感知和观察上,而是要进行空间想象、抽象概括,得到有关定义、以及公理、定理,使学生对空间图形的认识能适当的上升到理性层面;同时本节课的学习还为后面学习面面平行的判定做好“知识,方法及技能”的准备,即进行线面平行的判定是线线平行和线面平行之间进行转化必要过程;为空间中的垂直关系提供了重要的思维模式和解决问题的方法。(3)分析本节内容在高中数学、整册教材或本单元教材中的地位和作用根据上面的分析,本节内容在本单元中具有承上启下的作用;本节在本册教材中属于第二章的内容,平面几何与空间几何都是高考所考的内容,因此本节内容作为平面几何中位置判定必不可少的一部分在高中的数学学习中占有重要地位。另外,本节内容具有相当重要的现实意义,为解决实际问题提供了理论依据。所以通过该部分的学习,对培养学生的空间想象能力、抽象思维能力和应用意识,全面提高学生的数学素养非常重要。必要结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理,重在培养学生空间感与逻辑推理能力。在学生充分感知线面关系的基础上推理论证判定定理,培养学生的理性精神与思维能力。2、 教学目标分析(1)根据教材内容分析确定“三维”教学目标根据课程标准,我把这一节课的教学目标进一步分解为三个子目标,知识与技能目标,过程与方法目标,情感目标。知识与技能目标是根据本节的教材内容确定的,过程与方法目标,则主要是考虑到课堂教学应以学生为主体,教师为主导的教学原则;而情感目标则是为了营造一种良好的学习气氛,有利于提高学习兴趣和学习效率的因素。知识与技能目标:掌握直线和平面的三种位置;掌握直线与平面平行的判定定理及其应用过程与方法目标:通过本节学习,进一步培养学生的空间想象能力和几何论证能力。通过复习平面内直线与直线的位置关系,引导学生提出问题并加以论证,培养学生归纳总结的能力和抽象概括能力,进而形成科学的思维思维方法和良好的思维品质。情感目标:通过学生类比、归纳、得出直线与平面的三种位置关系,增强探寻事物规律的强烈愿望。通过体验线面平行判定定理的应用过程,激发学生的学习兴趣,树立学好数学的信心。(2)对教学目标进行解析,说明实现教学目标的方法根据以上教学目标,确定本节课的教学方法为“启、思、演、练、结”五字教学法,即在每个小的知识单元中先以固有的知识启发学生提出问题,进而通过自主探究,思考和分析问题,得出结论,然后再借助直观的模型到抽象的思维训练来演示知识,加强对问题的理解,最终通过反思和总结,达到初步解决问题的目标。即以平面内直线与直线的位置关系引入课题,启发学生类比,归纳出直线与平面的位置关系;通过创设情景,提出问题,引导学生思考直线与平面平行所需要的条件及其正确性,借助电脑演示和学生的动手操作,提高教学的直观性和趣味性,为教学重点和难点的突破提供感性基础。教学中教师精选出练习,则可以帮助学生巩固和强化知识;而结则包含两方面的内容,一方面是教师在授课中的及时小结和点拨,另一方面是学生在听课中的自我反思和总结,从中品尝获取新知的自信和成就感。3、教学重点分析根据教材内容,确定本节的教学重点为直线和平面平行的判定定理。本节教材中体现了空间中的平行关系的转化以及化归思想,如空间直线,平面平行的判定及性质定理的三大语言即符号语言,图形语言,文字语言的相互,线线,线面,面面平行之间的相互转化。在直线和平面平行的判定定理得出的过程中,应先让学生对典型实例进行动手操作,通过观察分析,归纳猜想等进行推理,再进行演绎推理,逻辑论证。教材通过“观察”“思考”“探究”等活动向学生提出问题,以问题引导学生的思维活动,以问题带动学生思维的主动性,体现了新课程高中立体几何内容一培养学生的逻辑思维能力,空间想象能力与合情推理能力为主要目标,该部分内容及其蕴含的数学思想方法都贯穿于整个立体几何之中。4、 教学难点分析考虑到判定定理证明的抽象性,以及学生的身心发展尚不成熟,语言表达及空间感与空间想象力相对不足,对于抽象事物的认识有一定的困难,因此把正确理解判定定理的证明过程作为第一教学难点,第二个教学难点则是掌握判定定理的应用。因为它是证明线线平行、面面平行的重要方法,在平行关系的证明中起着核心的作用。本节教材内容的处理是按照“直观感知操作确认思辨论证”的认识过程展开的,让学生从实际背景中抽象出数学模型,先通过动手实践与探究,直观感知与操作确认的方法,概括出线面平行,面面平行的判定定理,然后再对归纳出的性质进行论证,通过对图形的观察,实验,说明,使学生进一步了解空间直线,平面平行关系的性质及判定方法,学会准确地使用数学语言表述几何中的位置关系【2】。教材首先说明可以用线面平行的定义来判定线面平行,但用定义不方便,教材编者设置两个实例“观察”,意在让学生动手实验操作,直观感知。一例是观察转动的门扇的对边相互平行且保持不变。另一例是引导学生观察书的边缘与书面的关系,在此基础上教材再提出来“探究”性问题。这两个观察活动都来源于学生的现实生活中,说明数学来源于生活,贴近生活,教师要引导学生通过动手实践,进行独立思考,自主探索来落实新课标理念,使学生易于理解抽象的概念,突破难点。5、教学设计教学过程为了更好的突出重点、分解难点,本节教学设置了4个环节1. 问题引入、概念形成 时间:5分钟2. 定理探究 时间:15分钟3. 实战演练 时间:20分钟4. 小结归纳 时间:4分钟5. 作业布置 时间:1分钟(一)问题引入、概念形成师:在上节课我们介绍了直线与平面的位置关系,有几种?以什么作为划分的标准? 生:三种,以直线与平面的公共点个数为划分标准,分别是 直线与平面有两个公共点直线在平面内(直线上所有的点都在这个平面内)直线与平面只有一个公共点直线与平面相交直线与平面没有公共点直线与平面平行直线在平面内直线与平面相交直线与平面平行(设计意图:通过所给的问题开门见山的通过复习旧知识引入新内容。由于该部分内容较易理解,通过自学可培养学生的类比归纳能力.教师借助电脑规范位置关系的语言描述、符号表示以及作图方法和分类方法等重点内容,通过强调使学生对线面位置关系形成全方位的理解和认识。)(二)定理探究1如何判定直线与平面平行情境:将课本放在桌面上,翻动书页,书页外边缘所在直线与课本所在平面具有什么样的位置关系?书页外边缘所在直线与书页内边缘所在直线是否平行?书页内边缘所在直线在课本所在平面内吗?书页外边缘所在直线在课本所在平面内吗?让学生思考:如何判断一条直线与一个平面平行吗?生:借助定义用反证法说明直线与平面没有公共点(证明直线在平面外不能说明直线与平面平行)例1:已知a,b,且ab ,求证:a 。 你们会用什么方法证明呢? (从学生的直观感觉入手,可通俗地讲解为怎样放置跳高竿,使竿子和地面平行,以启发学生如何保证直线与平面平行。 ) 证明: ab经过a ,b确定一个平面a,b与是两个不同的平面b,且b=b假设a与有公共点P,则Pb,点P是a、b的公共点这与ab矛盾,a(设计意图:(1)先让学生小组合作探究,然后鼓励学生各抒己见,全班交流,通过交流学生会有一些想法,如可证明直线与平面没有交点(定义),但又不好说明。这时可提示学生从反面思考问题,让学生体会到反证法出奇制胜的效果。(2)为了更好的掌握这一思维过程,让学生写出证明过程,教师巡视指导。最后让学生概括出定理的语言描述、符号表示以及对应图形,从中体会成功的喜悦。)抽象概括: 直线与平面平行的判定定理 :如果平面外一条直线与这个平面内的一条直线平行,那么这条直线和这个平面平行。简述:线线平行,线面平行。关键在平面内找一条直线与平面外的直线平行。例2:空间四边形ABCD中,E、F分别是AB、AD的中点。求证:EF平面BCD证明:连结BDAEEB AFFD EFBD EF 平面BCD EF平面BCD BD 平面BCD(设计意图:通过例题的讲解,让学生进一步掌握直线与平面平行的判定定理,同时培养学生的逻辑思维能力和把线面平行关系(空间问题)转化为线线平行关系(平面问题)进行问题解决的数学思想。定理探究是本节课的难点,提示辅助线所起到的桥梁作用,得出“线线平行,则线面平行”的认识。然后师生共同总结出“直线与平面平行”所需要的条件。)(三)实战演练1.变式:如图,四棱锥ADBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.,求证:AB/平面DCF。关键:在平面内找一条直线与平面外的直线平行证明: 连结OF O为正方形DBCE 对角线的交点 BO=OE 又AF=FE AB不在平面DCF内,而OF在平面DCF中,且ABOFAB/OF2. 巩固练习1)如图,长方体ABCD-A1B1C1D1中,(1)与AB平行的平面是 ;(2)与 AA1平行的平面是 ;(3)与AD平行的平面是 ;2)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,求证: BD1/平面AEC证明:连结BD交AC于O,连结EO O 为矩形ABCD对角线的交点 DO=OB 又DE=ED1BD1EO(设计意图:强调解题的规范性,再引导学生自我反思,体会寻求“线线平行”这一关键条件的解题策略,并给出变式,体会数学的变化美。如此由浅入深,让学生在较低的起点基础上,能够有一个较高的落点,提高课堂教学的效率。)(四)小结归纳1证明直线与平面平行的方法:(1)利用定义:直线与平面没有公共点(2)利用判定定理线线平行 线面平行a , b , ab a2数学思想方法:转化的思想线线平行 线面平行平面问题 空间问题(五)布置作业1必做题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025专业型会计考试题及答案
- DY公司员工敬业度提升策略研究
- 永磁直线电机环绕式水冷系统的传热性能研究及优化
- 《世说新语》二则(原文、注释、译文、简析、总评)
- 胶状化妆品制造工岗前复试考核试卷含答案
- 第11课 元朝的统治(说课稿)-2025-2026学年七年级历史下册新课标同步教学说课稿与说课稿(人教部编版)
- 生境异质性对蓝莓花部及叶际微生物种类及丰度的影响
- 2025年焊工作业人员理论考试练习题含答案
- 2025年悬架系统减震元件项目建议书
- 2025年安全生产考试服务平台低压电工作业复审题库含答案
- 二年级应用题大全800题二年级上册数学乘法应用题
- YY/T 1851-2022用于增材制造的医用纯钽粉末
- GB/T 5163-2006烧结金属材料(不包括硬质合金)可渗性烧结金属材料密度、含油率和开孔率的测定
- GB/T 19575-2004农产品批发市场管理技术规范
- 《管理沟通实务(第四版)》课件第一章 沟通与管理沟通
- GA 36-2014中华人民共和国机动车号牌
- 人教七年级历史上第一单元 史前时期:中国境内人类的活动测试题word版含答案
- 监理事故案例分析课件
- 我国大型基建工程材料供应的特点
- 【实验报告】教科版小学科学六年级下册实验报告
- 2021-2022人教部编版三年级语文上册第二单元 习作《写日记》教学设计
评论
0/150
提交评论