




已阅读5页,还剩71页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
医学影像成像理论 第一章概论 2020 1 3 2 概论第一节医学成像技术的分类第二节医学成像的基本条件第三节医学成像系统的评价第四节医学影像展望 概论 2020 1 3 3 一 医学影像技术医学影像技术 是借助于某种介质 如X线 电磁场 超声波 放射性核素等 与人体相互作用 用理工学基础理论和技术 把人体内部组织 器官的结构 功能等具有医疗情报的信息源传递给影像信息接收器 最终以影像的方式表现 提供给诊断医生 使医生能根据自己的知识和经验针对医学影像中所提供的信息进行判断 从而对病人的健康状况进行判断的一门科学技术 2020 1 3 4 医学影像技术包括 X线成像 radiography X线计算机体层成像 computedtomography CT 磁共振成像 magneticresonanceimaging MRI 超声成像 ultrasoundimaging 放射性核素成像 radiosotopeimaging 可见光成像 红外成像和微波成像等 医学影像成像理论 作为医学影像技术专业的一门重要专业课程 将为学生对实现医学自动化所必须的图像化诊断提供依据 使学生从医学成像原理 医学成像设备及医学成像系统分析等方面系统掌握该研究领域的基础知识 了解该领域的最新发展方向 2020 1 3 5 医学成像的目的 通过各种方式探测人体 获得人体内部结构的形态 功能等信息 将其转变为各种图像显示出来 进行医学研究和诊断 现代医学影像技术的应用与发展 印证了100多年来医学 生物 物理 电子工程 计算机和网络通信技术的诞生与沿革 数字医学影像新技术 新设备对医学影像诊断和数字影像治疗带来许多根本的改变 医院里有哪些医学影像设备和是否开展数字影像介入治疗 在很大程度上代表了这家医院的现代化检查治疗的条件与诊治水平 目前现代医学技术的提升和现代影像技术的发展相互融合 相互推动 相互依存的趋势已经成为共识 新的现代医学影像技术和设备的研制也已经成为21世纪现代医学技术和生命科学发展的经济技术增长点 学习目标 掌握X射线成像 CT成像 磁共振成像 核医学成像 超声成像的基本原理 了解各种基本的成像装置及系统的性能 培养较强的抽象与逻辑思维能力以及用理论解决实际问题的能力 从而初步具备研究医学成像方法 系统以及设备的能力 2020 1 3 7 课时安排 2020 1 3 8 考核方式 平时成绩所占比例为10 实验成绩所占比例为20 期末考试成绩所占比例为70 2020 1 3 9 第一节医学成像技术的分类 按其成像原理和技术的不同 分为两大领域 一 以研究生物体微观结构为主要对象的生物医学显微图像学 biomedicalmicroimaging BMMI 二 以人体宏观解剖结构及功能为研究对象的现代医学影像学 modernmedicalimaging MMI 2020 1 3 10 2020 1 3 11 2020 1 3 12 现代医学成像按其信息载体可分为以下几种基本类型 1 X线成像 测量穿过人体组织 器官后的X线强度 2 磁共振成像 测量人体组织中同类元素 H 原子核的磁共振信号 3 核素成像 测量放射性药物在体内放射出的 射线 4 超声成像 测量人体组织 器官对超声的反射波或透射波 5 光学成像 直接利用光学及电视技术 观察人体器官形态 6 红外 微波成像 测量体表的红外信号和体内的微波辐射信号 12 一 X线成像 X线成像 是由X线管发出的X线透过被检人体的组织结构时会发生衰减 由于各种组织的密度 原子序数 Z 以及厚度 d 的不同 而对X线的衰减系数 不同 使得穿过人体出射的X线强度不同而产生X线对比度 KX 含有人体信息的KX由屏 片系统 影像增强器 成像板或平板探测器 接收 再经过处理形成可见的光学影像 数字X线成像 是采用影像板 IP 平板探测器 FPD 等来代替屏 片系统作为X线信息接收器 应用各种探测器将X线信息转换成电信号 再经模 数 A D 转换成数字化影像 数字X线成像包括计算机X线摄影 CR 数字X线摄影 DR 数字减影血管造影 DSA 和数字X线透视等 2020 1 3 14 2020 1 3 15 传统X线机 数字X线影像设备 1 计算机X线摄影 computedradiography CR 是X线平片数字化的比较成熟的技术 CR系统是使用可记录并由激光读出X线成像信息的成像板 imagingplate IP 作为载体 经X线曝光及信息读出处理 形成数字式平片图像 2020 1 3 16 2020 1 3 17 CR ComputedRadiography 2 数字X线摄影 digitalradiography DR 直接数字化X射线摄影是指在具有图像处理功能的计算机控制下 采用专门研制的X射线探测器直接把X射线信息影像转化为数字图像信息的技术 具有成像速度快 图像质量高 照射剂量低 曝光宽容度大 曝光条件易掌握 可以根据临床需要进行各种图像后处理的特点 2020 1 3 19 2020 1 3 20 3 数字血管减影仪 DSA 20世纪80年代推出了数字减影血管造影 数字减影血管造影术是常规造影术与电子计算机处理技术相结合的一种新型成像技术 血管造影检查是对注入血管造影剂前后的图像进行相减 得到无骨骼 内脏 软组织背景的清晰的血管影象 而血管的形态 结构反映了多种疾病的基本信息 2020 1 3 21 DSA 2020 1 3 22 2020 1 3 23 医学影像减影图像 注入造影剂前的影像 注入造影剂后的影像 相减后的影像 2020 1 3 24 DSA影像 二 X线计算机体层成像 1971年 世界上第一台用于颅脑的CT扫描机 计算机人体断层摄影术 由柯马克 A M Cormack 和郝恩斯费尔 G N Hounsfield 首次研制成功 1979年因此项技术的发明 柯马克 郝恩斯费尔获得了生理与医学诺贝尔奖 2020 1 3 25 CT成像 自X线管发出的X线首先经过准直器形成很细的直线射束 用以穿透人体被检测层面 经人体薄层内组织 器官衰减后射出的带有人体信息的X线束到达检测器 检测器将含有被检体层面信息的X线转变为相应的电信号 通过测量电路将电信号放大 由A D转换器变为数字信号 送给计算机处理系统处理 计算机系统按照设计好的方法进行图像重建和处理 得出人体层面上组织 器官衰减系数 分布情况 并以灰度方式显示人体这一层面上组织 器官的图像 CT成像优势 获得无层面外组织结构干扰的横断面图像 能准确地反映横断平面上组织和器官的解剖结构 密度分辨力高 能显示出普通X线检查所不能显示的病变 能够准确地测量各组织的X线吸收衰减值 可通过各种计算进行定量分析 可进行各种图像的后处理 2020 1 3 26 三 磁共振成像 1946年美国斯坦福大学的布洛赫 FelixBloch 和哈佛大学的珀塞尔 EdwardPurcell 首先发现了磁共振现象 由此产生的磁共振波谱学被广泛地应用于对物质的非破坏性分析 20世纪70年代美国纽约州大学的达马迪安 RaymondDamadian 和劳特伯 PualLauterbur 将磁共振用于医学成像 20世纪80年代被快速地发展起来成为医学影像新技术 磁共振成像 MRI 技术是在物理学领域发现磁共振现象的基础上 于20世纪70年代末继CT之后 借助计算机技术和图像重建方法的进展和成果而发展起来的一种新型医学影像技术 2020 1 3 27 MR成像 是通过对静磁场 B0 中的人体施加某种特定频率的射频脉冲 RF 电磁波 使人体组织中的氢质子 1H 受到激励而发生磁共振现象 当RF脉冲中止后 1H在弛豫过程中发射出信号 MR信号 被接收线圈接收 利用梯度磁场进行空间定位 最后进行图像重建而成像的 2020 1 3 28 四 超声成像 1942年奥地利科学家达西科 Dussik 首先将超声技术应用与临床诊断 从此开始了医学超声影像设备的发展 1954年瑞典人应用M型超声显示运动的心壁 称为超声心动图 人类从20世纪50年代开始研究二维B型超声 至70年代中期 实时二维超声开始应用 2020 1 3 29 五 核医学成像 20世纪90年代推出了更新 更强的核医学影像设备ECT 包括PET SPECT等设备 PET也称正光电子成像设备 主要的优势是超强的医学影像的识别与诊断的能力 尤其是利用注入体内的增强显影剂或示踪剂 在体内循环可以动态地 靶向目标清晰地显示被检部位形态和功能的异常情况 甚至可以检查出细胞级别的病变 2020 1 3 30 六 其他成像 可见光成像 在医学上的应用主要是内镜技术 1958年第一台纤维胃镜诞生以来 至今制成了光纤内镜 电子内镜 超声内镜 激光内镜等各种不同性能的内镜 电子内镜抛弃了光导纤维传像的方式 在镜头端装有一只微型电视摄像机 由电荷耦合器件 CCD 将物镜所成的图像变换为电视信号 再转换成为光学图像 它对官腔内状态既可直接在屏幕显示 供多人同时观察 也可用磁带录相机录相或打印机输出 还可直接夹取活体组织进行活检 止血和局部病灶治疗 目前内镜的使用范围已由消化道扩展到泌尿 循环 呼吸 生殖等多个系统 以及腹腔 耳 喉 血管 关节腔等器官 2020 1 3 31 激光纤维内镜 成功地用于支气管癌 肺癌等疾病的腔内诊治 激光全息摄影技术能复原出被摄体的立体图像 激光透照影像能很好地显示体内异物和骨骼畸形 这些检查技术有的已用于临床诊断 红外成像 在医学上主要用于人体浅表疾病的探查 主要可分为被动成像方式的红外摄影术和主动成像方式的红外摄影术 红外医学成像的最大优点 对人体无辐射损害 不会因检查而引起人体状态的改变 操作方法简便 经济 是一种具有应用前途的医学影像检查方法 微波成像 微波是指波长从0 00l l m波段的电磁波 3 108 3 1012Hz 除利用微波热效应制成的各种临床治疗仪器外 微波还是CT机的一种理想能源 也可作为显微镜的 光源 近年来微波医学成像技术在不断进步 2020 1 3 32 第二节医学影像成像的基本条件 一 信息影响传递与形成二 信息源三 影像信息载体四 影像信息接收器五 影像视读 广义的摄影 是应用光或其它能量来表现被照体的信息状态 并以可见的光学影像加以记录的一种技术 X线摄影 X线透视 CT MR等成像均需要具备有一个成像系统 成像系统即是将信息载体表现出来的信号加以处理 形成表现信息影像的系统 成像程序 能量 信息信号 检测 图像形成 成像三大要素 成像的信息源 被检体 信息载体与信息接收器 一 信息影像的传递与形成 一 模拟X线信息影像的传递与形成 X线信息影像的形成与传递5个阶段 1 X线信息影像的产生X线信息影像的形成基础是被照体对X线束的衰减 X线在物质中的衰减符合如下规律 2 X线信息影像的转换将不均匀的X线强度分布 通过接受介质 屏 片系统 X线电视等 转换为密度影像 或二维的光强度分布 荧光屏 影像增强器系统等 影像 以用于观察诊断 3 密度分布转换成可见光的空间分布借助观片灯可将密度分布转换成可见光的空间分布 然后投影到视网膜 4 视觉影像的形成通过视网膜上明暗相间的图案 形成视觉影像 5 意识影像的形成通过对视觉影像的识别 判断 作出评价或诊断 二 数字信息影像的传递与形成数字X线信息影像的传递与形成基本上与模拟信息影像的传递与形成相同 不同之处主要是影像信息的传递过程中增加了模 数转换 将模拟信息转换成数字信息 而后进行各种处理和图像重建 最后还要将数字影像通过数 模转换成可以视读的模拟影像 二 信息源 人体组织结构大至可分为骨骼 肌肉 脂肪及空气四大类 对X线的衰减按骨骼 肌肉 脂肪 空气的顺序逐渐减弱 这种衰减差异的大小就形成了X线影像的对比度 然后通过各种影像接收器 探测器 进而形成可见的X线影像 一 X线成像X线与物质的作用 X线成像是X线束进入人体后 一部分被人体组织结构吸收和散射 另一部分透过人体沿原方向向前传播 X线通过人体组织时是按照指数规律衰减 当X线的衰减以光电吸收为主时 被检体的线衰减系数 与人体组织的Z 存在着如下关系 X线在透过人体时 主要发生光电效应和康普顿效应两种作用形式的衰减 下图是以肌肉和骨骼为例 显示不同能量的X线在两种组织中发生效应的比率 二 磁共振成像根据磁共振成像 MRI 定义知道磁共振信号的强弱与人体组织的氢质子密度密切相关 在人体各种组织结构中 1H占原子数量的2 3 而且1H为磁化最高的原子核 所以目前生物组织的MRI主要是1H成像 三 影像信息载体 一 X线本质是一种电磁波 波长很短 大约与晶体内呈周期 规则 排列的原子间距为同一数量级 在1 10 10m左右 X线的波长短 光子能量大 故穿透物质的能力强 X线的穿透性不但与其波长 有关 还与物质的性质 结构有关 一般物质的原子序数 Z 高 密度 大 吸收X线多 X线穿透性差 X线对人体不同组织穿透性能的差别 是X线摄影和透视的基础 二 射频电磁波产生MR信号必须具备三个基本条件 即能产生共振跃迁的自旋不为零的原子核 1H 静磁场 B0 产生一定频率 1H发生共振的拉莫尔频率 电磁波的射频磁场 从三个条件中可以看出射频 RF 电磁波是产生和传递MR信号的信息载体 三 超声波 超声探头发射的超声波经过声阻抗 Z 不同的组织界面时会发生反射 透射 散射现象 其反射声波带回了组织脏器界面的形状轮廓 透射声波进入另一组织后碰到新的组织界面又反射回另一脏器的界面 超声波遇到小的障碍物 如细胞 时产生散射 散射波带着脏器的信息被探头接收 因此说在USI中超声波是人体组织结构 脏器信息的载体 四 放射性药物 在核医学成像 显像 中用各种方法将放射性药物注入人体需耍显像的部位 再利用人体内放射性核素所放出的射线 射线 信号 反映放射性核素的浓度分布 显示人体组织器官 脏器的形态学信息和功能信息 放射性核素示踪技术能准确定量地测定代谢物质的转移和转变 可以确定放射性示踪剂在组织官中的定量分布 并且对组织器官进行准确的定位 用 照相机或SPECT等进行脏器或病变的核素显像时显示 射线在脏器中的放射性核素分布情况 故在核医学成像中放射性核素是人体组织结构 脏器信息的载体 医学影像成像中常用的检测器有 一 屏 片系统 二 影像增强器 X线电视 三 成像板 四 平板探测器 五 CT成像检测器 六 磁共振成像的接收线圈 七 超声探头 八 放射性探测器 四 信息检测 一 屏 片系统屏 片系统即增感屏与X线胶片组合系统 它作为透过被检体后带有人体信息的接受介质 或称作带有人体信息的X线接收器 其工作原理是 透过人体的X线到达增感屏的荧光体层时激发荧光体发出荧光 并将荧光强度分布传递给X线胶片 与X线胶片感光乳剂层中的卤化银 AgX 发生光化学反应 即形成银颗粒分布的潜影 Ag原子 在潜影的催化下 已经过X线曝光的胶片经显影加工处理 将胶片上大量的AgX还原成Ag原子 大量的Ag原子形成二维的光学密度 D 分布 形成了模拟X线影像的X线照片 二 影像增强器 X线电视由于X线有荧光作用 在X线透视成像中 透过人体的X线照射到荧光物质时 荧光物质的原子被激发或电离放射出可见的荧光 早期的X线透视成像就是将透过人体的X线照射到荧光屏上使其成为透视X线影像的 这种荧光影像强度很弱 只能在暗室中观察阅读 现在的X线透视成像是将透过人体的X线照射到影像增强器 影像增强器将荧光影像亮度增强 然后输入X线电视 使之成为可见的视频影像 三 成像板在计算机X线摄影 CR 中 使用成像板 IP 作为影像信息的接收器 CR系统中 透过人体的X线入射到IP时 X线量子被IP的光激励发光物质层内的荧光颗粒吸收 释放出电子 其中一部分电子散布在成像层内呈半稳定状态 形成潜影 将形成潜影的IP进行激光扫描时 半稳定状态的电子转换为光量子 发生光激励发光 PSL 现象 光量子被光电倍增管检测到 将光信号传化为电信号并放大 再经模 数 A D 转换器转换为数字信号 进行处理后形成数字影像 四 平板探测器数字X线摄影 DR 中使用两种平板探测器 FPD 作为影像信息的接收器 即直接转换FPD与间接转换FPD 直接转换FPD分为非晶硒 a Se 为光电材料的FPD和多丝正比电离室型 现在已很少使用 间接转换FPD又分为碘化铯CsI 非晶硒a Si和CCD摄像机两种 五 CT成像检测器CT成像是X线经过准直器形成很细的直线射束 或扇形射线束 穿透人体被检测的体层面 经人体薄层内组织器官衰减后射出的X线 投影P 到达高灵敏度的检测器 检测器接收透过被检体层后的X线束强度 I 然后将这含有人体信息的X线强度转换成相应的电信号 通过测量电路将电信号放大 由A D转换器转换为数字信号 再经计算机处理系统处理 重建出人体层面上组织结构对X线的衰减系数 的灰度图像 六 磁共振成像的接收线圈磁共振成像 MRI 系统中应用各种成像感应线圈来检测MR信号 方法是采用两个互相垂直的线圈 分别进行射频发射和MR信号的接收 因此也叫双线圈感应法或交叉线圈法 在常用的XYZ直角坐标系中 常将发射线圈置于X轴上 接收线圈加在Y轴上 与静磁场B0垂直 七 超声探头超声波成像中超声探头 换能器 利用正压电效应将从人体组织 脏器反射回的超声脉冲回波信号 频移信号 转化为电信号 再由接收电路进行放大 信息处理形成各种超声图像 八 放射性探测器人体靶器官或组织的放射性核素发射能穿透组织的 射线 使用灵敏的放射性探测器可以很容易地在人体外表探测到它们分布的所在位置 定量地测定其大小并转换成电信号 例如用 照相机或SPECT探测各种脏器的显像 五 影像视读 各种医学图像的视读方式 硬阅读和软阅读 硬阅读 即是将各种成像技术得到的医学图像通过暗室处理 激光打印机等打印成X线照片影像 CT影像 MR影像等 然后通过这些照片影像进行视读 软阅读 即是将各种成像技术得到的医学图像通过工作站 或由网络传输到工作站 然后在工作站的影像显示器上进行视读 两者各有其优点 但后者可以进行各种图像处理 使影像信息更清晰 有利于诊断 同时可以进行图像储存与传输 远程会诊等 但是影像显示器的空间分辨力不如照片影像 第三节医学成像系统的评价 纵观上面提到的各种成像方式 它们在成像原理 成像参数及适用范围等方面各不相同 这些不同的成像系统并不能相互取代 在临床应用中起着相互补充的作用 因此 对一个成像系统 应从各个不同角度全面分析其优缺点 了解其临床适用范围 并以一些客观的物理指标加以评价 各种评价参数的含义 方法将在第五章X线成像理论中详述 2020 1 3 54 一 电磁波透射成像 用透射方法成像时 需考虑的主要因素 分辨力 衰减 从分辨力的角度考虑 用于成像的辐射波的波长至少应小于1 0cm 从衰减的角度考虑 若衰减过大 则很难检测到透过人体的射线 若衰减过小 则不能得到对比清晰的图像 2020 1 3 55 二 超声成像与X线成像 超声波与X线在人体组织中的传播过程不同 因此这两种成像方式有明显不同的特点 1 X线波长短 1 10 12 5 10 11m 在人体内沿直线传播 不受组织差异的影响 图像分辨率高 诊断用超声波波长为0 5mm左右 在人体中传播时将发生衍射 造成图像分辨力降低 这是超声成像制约因素 2 空气对超声波呈现明显的衰减特性 而空气对X线的衰减作用可忽略不计 2020 1 3 56 3 超声成像可直接获取三维空间中某一特定点的信息 即可方便地获取人体断面图像 而X线难以有选择地对所指定的平面成像 4 对人体有无危害是它们之间的一个重要区别 5 具有各自最适宜的临床应用范围 脉冲回波式超声适用于腹内软组织结构或心脏的显像 不宜对胸腔肺部进行检查 X线探查胸腔很成功 但对腹部检查只能显示极少的器官 若采用X线造影法 也可有选择地对特定器官显像 2020 1 3 57 三 MR成像与CT线成像 四 形态学成像与功能成像 形态学成像 X线成像显示的是人体结构的解剖学形态 对疾病的诊断主要是根据形态上的密度变化 较难在病理研究中发挥作用 功能成像 放射性同位素能直接显示脏器功能 特别是代谢方面的问题 功能成像一般可分为有源和无源两类 2020 1 3 59 五 对人体的安全性 评价X线与放射性同位素成像给人体造成电离辐射损伤时注意其差别 1 X线摄影时 辐射强度相对较大 但照射时间短 2 放射性同位素材料浓度虽低 但对人体的照射持续较长时间 直至其排出体外或衰变结束 3 因此 进行X线检查时应尽可能减少对人体的照射剂量 选择放射性材料时 应考虑其具有较短的半衰期 4 超声成像无损 无创 特别是对敏感区域 如胎儿与眼部的检查 比X线安全得多 但对发育初期的胚胎 也应慎用 2020 1 3 60 2020 1 3 61 几种成像系统技术比较 计算机医学图像的分辨率 计算机医学图像的分辨率和采集方式 转换精度 处理方法及显示视窗的清晰度等诸多因素有关 1 图像分辨率 指图像中存储的信息量 是每英寸图像内有多少个像素点 分辨率的单位为PPI PixelsPerInch 通常叫做 像素每英寸 2 空间分辨率 对于摄影影像 通常用单位长度内包含可分辨的黑白 线对 数表示 线对 毫米 2020 1 3 62 CT的空间分辨力 密度分辨率 空间分辨力在CT设备中有时又称作几何分辨力或高对比度分辨力 它是指在高对比度的情况下鉴别细微结构的能力 也即显示最小体积病灶或结构的能力 在评价CT图像质量的时候 经常首先考虑空间分辨力 CT图像由于检测器有一定大小 取样有一定距离 所以空间分辨力由X线管焦点的几何尺寸决定 而基本与X射线剂量大小无关 在X线剂量一定的情况下 空间分辨力与密度分辨力存在一定的制约关系 不可能同时改善空间分辨力与对比度分辨力 密度分辨率表示的是影像中能显示的最小密度差别 CT的密度分辨率受噪声和显示物的大小所制约 噪声越小和显示物越大 密度分辨率越佳 CT图像的密度分辨率比X线照片高得多 2020 1 3 63 第四节医学影像展望 国际上医学影像技术原来称为放射技术 现代医学影像技术未来发展趋向 1 在保证人身安全的前提下 努力改进信息传递方式 提高信息传递效率并开创新的信息表达方式 提高图像显示质量 2 其最终的医疗意义是更精确地发现人体组织初期病理变化 为早期诊断 治疗提供依据 2020 1 3 64 一 医学影像学发展历程1895年11月8日 德国物理学家威廉 康拉德 伦琴 WilhelmConradRontgen 发现了X线 1895年11月22日 伦琴利用X线为其夫人拍摄了手的照片开始了X线摄影 1901年伦琴被授予诺贝尔物理奖 放射技术伊始1 1895年12月22日 世界第1张X线照片诞生 2 1896年 制成第1台气体电离式X线管 1896年2月3日 制造出了第1台医用X线设备 3 1896年 荧光屏是由一张卡片纸的一面涂上铂氰化钡制成的 不久 爱迪生发现了酸钙 CaW04 的荧光物质比铂氰化钡成像效果好 他制造出了自己的荧光屏装置 爱迪生荧光检查器 20世纪10 20年代 出现了常规X线机 1913年 GusravBucky博士制作出控制散射线的滤线栅 同年推出了X线胶片 4 20世纪60年代中 末期形成了较完整的放射诊断或放射学 radio 学科体系 医技一体阶段20世纪10 20年代大部分医用X线设备由特定的医师来操作 当时已经有了放射技术工作 但没有专门的技术人员 医生既是诊断大夫 也是放射技师 技术工作无理论 是医生的附属工作 医技分家阶段随着X线设备的发展 出现了较现代化的设备 由于医生的诊断工作量较大 他们逐渐不能兼任技师工作 需要专门的技术人员操作设备 最早的x线操作人员除x线摄影师外 还包括物理学家 化学家 工程师 电学家 护士 甚至杂工等 他们被吸收进来操作x线机 为诊疗者摆位等 直到被称为X线技术人员 X线技术人员逐渐地从非X线技师 进展到技术熟练的 受过培训的技师 20世纪60年代 随着X线技术的发展 要求x线技术人员拥有各方面的知识 并与相关设备 患者 物理学家 放射诊断学家和管理者之间保持必要的关系 形成独立学科阶段1 随着工业发展 医学成像设备不断更新 同时医生又需要高质量的照片 由于实际工作需要 有专家学者提出办学 培养放射技术人员 2 我国于50年代创办放射技术专业中专 教师从老技师中挑选 3 如今已有了正规 完善的本科 研究生教育 1 开发超高分辨力的显示系统2 提高成像设备的性能 增加新的功能CT方面 继续提高空间分辨力和扫描速度 重点研究疾病在新陈代谢方面的变化 降低成本 磁共振方面 高场 1 5T
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 材料损坏赔偿协议书模板
- 风管加工及安装合同范本
- 灵活用工合同免责协议书
- 物业股份出售协议书模板
- 福州串串香加盟合同范本
- 经销商代理销售合同范本
- 维护企业权益的合同范本
- 清包保温合同协议书范本
- 深圳出租写字楼合同范本
- 煤炭包销合同协议书模板
- 网络运维专项方案
- DZ∕T 0173-2022 大地电磁测深法技术规程(正式版)
- 手术器械检查与保养
- 2024中国农业科学院农业资源与农业区划研究所农业遥感团队科研助理公开招聘1人高频考题难、易错点模拟试题(共500题)附带答案详解
- 多囊卵巢综合征诊治路径专家共识
- 医用气体系统维保服务方案
- JJF 2093-2024高加速寿命和应力筛选试验系统校准规范
- 糖尿病急性并发症识别处理和预防护理课件
- 精神科风险评估
- 电机故障诊断培训课件
- 中药临床应用指导原则与合理用药课件
评论
0/150
提交评论