人教版初中数学基础知识史上最全归纳.doc_第1页
人教版初中数学基础知识史上最全归纳.doc_第2页
人教版初中数学基础知识史上最全归纳.doc_第3页
人教版初中数学基础知识史上最全归纳.doc_第4页
人教版初中数学基础知识史上最全归纳.doc_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

。七年级第一章有理数1、 有理数:整数和分数统称为有理数。有理数包括有限小数或无限循环小数。整数:正整数、0、负整数; 分数:正分数、负分数。2、 数轴:(1)四要素:直线、原点、正方向、单位长度。(2)正数在原点的右边,负数在原点的左边,数轴上右边的数总大于左边的数。3、 相反数:只有符号相同的两个数叫做互为相反数。(1)如果a、b互为相反数,那么a+b=0。(2)互为相反数的两数位于数轴上原点的两侧,且到原点的距离相等。4、 绝对值:表示数a的点与原点的距离叫数a的绝对值。(1)正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。(2)两个负数,绝对值大的反而小。5、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加。绝对值不相等的异号两数相加,取绝对值较大的加数的符号并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加和为0。一个数与0相加,仍得这个数。 运算律:交换律a+b=b+a。结合律(a+b)+c=a+(b+c)。6、 有理数的减法法则:减去一个数,等于加上这个数的相反数。7、 化简规则:同号结合;同分母的结合;互为相反数的结合;凑整结合。8、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。 乘积是1的两个数互为倒数。几个不为0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。 运算律:交换律ab=ba;结合律(ab)c=a(bc);分配律a(b+c)=ab+ac。9、除法法则: 除以一个不等于0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。10、有理数的乘方: 中,a叫底数,n叫指数,整个结果叫幂。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0.11、 运算顺序: 先乘方,再乘除,最后加减。 同级运算,从左到右进行。 有括号,先算括号里的,按小括号、中括号、大括号依次进行。12、科学计数法:,n是整数。如果大于10,n比整数位小一;如果是小于1的小数,从左数第一个不为零的数前面有几个零,n就是负几次方。13、有效数字:从一个数的左边第一个不为零的数字起,到末尾数字止,所有的数字都是这个数的有效数字。第二章 整式加减1、整式:单项式:只含有数或字母的积的式子叫单项式。(单独一个字母或数字也是单项式); 系数:单项式中的数字因数; 次数:单项式中,所有字母的指数和。多项式:项:每一个单项式(注意带符号)。 次数:多项式里次数最高的项的次数。2、同类项:所含字母相同,并且相同字母的指数也相同的项。3、合并同类项:系数相加,字母和字母的指数不变。第三章 一元一次方程1、等式的性质一:等式两边加(或减)同一个数(或式子),结果仍相等。等式的性质二:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。2、一元一次方程的解法:去分母去括号移项合并同类项系数化为一。注意: 去分母:两边同乘分母的最小公倍时,每一项都不能漏乘。 去括号:“去正不变,去负全变”。 移项:是从等号一端移到另一端,移项要变号。 合并同类项:系数相加减做系数,字母和字母的指数不变。 系数化为一3、 一元一次方程的解的讨论:ax=b 当a0时,方程有唯一解为x= 当a=0而b=0时,方程有无数个解。 当a=0而b0时,方程没有解。第四章 图形的认识1、直线、射线、线段: 两点确定一条直线。 两点之间线段最短。 线段的比较:度量法和叠合法。两点间的距离:连接两点间线段的长度。 线段中点:将线段平均分成两部分2、 2、角: 有公共端点的两条射线组成的图形叫角。角的换算:1周角=360;1平角=90;1=60;1=60。角的比较:度量法和叠合法。角的运算:加减乘除;度与度相运算,分与分相运算,秒与秒相运算。余角和补角:A、B互余A+B=90;A、B互补A+B=180。等角的补角相等,等角的余角相等。 角平分线:将角平均分成两份,画法:尺规作图或量角器。第五章 相交线与平行线1、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。2、垂直的性质:过一点有且只有一条直线与已知直线垂直。3、垂线段最短。4、点到直线的距离:直线外一点到这条直线的垂线段的长度。5、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 推论:如果两条直线都与第三条直线平行,那么这两条直线也平行。6、平行线的判定:同位角相等,两直线平行。内错角相等,两直线平行。 同旁内角互补,两直线平行。推论:垂直于同一直线的两直线互相平行。7、平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。8、平移:平移前后的两个图形形状大小不变,位置改变。对应点的线段平行且相等。9、命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。命题分为真命题和假命题两种;定理是经过推理证实的真命题。第六章 平面直角坐标系1、对应关系:平面直角坐标系内的点与有序实数对一一对应。2、平面内两条互相垂直、原点重合组成的数轴组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向 右 为正方向;竖直的数轴为y轴或纵轴,取向 上 为正方向;两个坐标轴的交点为平面直角坐标系的 原点 。3、各象限点的坐标符号:(注意:坐标轴上的点不属于任何一个象限) 4、特征坐标: x轴上纵坐标为0;y轴上横坐标为0;第二象限 第一象限 一三象限夹角平分线上横纵坐标相等;(,+) (+,+) 二四象限夹角平分线上横纵坐标互为相反数。 5、对称规律: 关于x轴对称横坐标不变,纵坐标互为相反数; 第三象限 第四象限 关于y轴对称横坐标互为相反数,纵坐标不变;(,) (+,) 关于原点对称横纵坐标都互为相反数。 6、平移规律:左右平移纵坐标不变,横坐标左减右加;上下平移横坐标不变,纵坐标上加下减。第七章 三角形1、三边关系:两边之和大于第三边,两边之差小于第三边。2、三条重要的线段:高:过顶点作对应边的垂线段中线:连接顶点与对应底边中点的线段角平分线:角的平分线与对应边相交所得的线段3、三角形的内角和等于180,外角和等于360.4、三角形的外角:三角形的一个外角等于与他不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。5、多边形的内角和等于,多边形的外角和是360。6、多边形的对角线:过一个顶点可作(n3)条,共有条。7、平面镶嵌:在一个顶点处的各角和为360度。单独可镶:正三角形,正方形,正六边形。两种组合镶嵌:边数成倍数关系第八章 二元一次方程组1、二元一次方程:两个未知数,所含未知数的项的次数都是12、二元一次方程组:两个未知数相同的二元一次方程组合在一起3、二元一次方程组的解法: 代入消元法:由二元一次方程组中一个方程,将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。加减消元法:两个二元一次方程中同一未知数的系数相反或相等 时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,再求解。消常数法:当两个方程的常数项相同或相反时,把这两个方程相减或相加,消去常数,得出两个未知数间的关系,再代入其中一个方程求解。4、二元一次方程组的解:同时满足这两个方程的一组未知数的值。5、实际应用:审题设未知数列方程组解方程组检验作答。第九章 不等式与不等式组1、不等式:含有“”、“ ”、“ ”、“ ”、“ ”的式子2、一元一次不等式:一个未知数,未知数的次数是1的不等式3、不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向改变。不等式两边乘(或除以)同一个正数,不等号的方向不变。 不等式两边乘(或除以)同一负数,不等号的方向改变。4、不等式的解法:同一元一次方程一样,注意符号和不等号方向。5、不等式组的解:“大大取大”,“小小取小”,“大小小大取中间”,“大大小小是无解”。第十章 数据的收集、整理与描述1、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。(1)通过调查收集数据的一般步骤:明确调查问题确定调查对象选择调查方法 展开调查 记录结果 得出结论(2)收集数据常用的方法:民意调查:如投票选举 实地调查:如现场进行观察、收集、统计数据 媒体调查:报纸、电视、电话、网络等调查都是媒体调查。2、数据的表示方法:(1)统计表:直观地反映数据的分布规律 (2)折线图:反映数据的变化趋势(3)条形图:反映每个项目的具体数据 (4)扇形图:反映各部分在总体中所占的百分比(5)频数分布直方图:直观形象地反映频数分布情况 6)频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点3、调查方式:(1)全面调查,优点是可靠,、真实; (2)抽样调查,优点是省时、省力,减少破坏性;随机抽样调查具有广泛性和代表性。4、总体和样本:(1)总体:要考察的所有对象 (2)个体:组成总体的每一个考察对象 (3)样本:从总体中抽出的所有实际被调查的对象组成一个样本。(4)样本容量:样本中给个体的数目 5、组距:每个小组两个端点之间的距离6、画直方图的一般步骤:(1)计算最大值与最小值的差;(2)决定组距与组数,先根据数据个数确定组距,再计算组数,注意无论整除与否,组数总是比商的整数位数多1;(3)确定分点,并分组;(4)列频数分布表; (5)绘制频数分布直方图八年级第十一章 全等三角形1 全等三角形的性质:全等三角形对应边相等、对应角相等。2 全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。3 角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等4 角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。5 证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),、回顾三角形判定,搞清我们还需要什么,、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).第十二章 轴对称1如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。2轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。3角平分线上的点到角两边距离相等。4线段垂直平分线上的任意一点到线段两个端点的距离相等。5与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。6轴对称图形上对应线段相等、对应角相等。7画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。8点(x,y)关于x轴对称的点的坐标为(x,-y) 点(x,y)关于y轴对称的点的坐标为(-x,y) 点(x,y)关于原点轴对称的点的坐标为(-x,-y)9等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。10等腰三角形的判定:等角对等边。11等边三角形的三个内角相等,等于60,12等边三角形的判定: 三个角都相等的三角形是等腰三角形。 有一个角是60的等腰三角形是等边三角形 有两个角是60的三角形是等边三角形。13直角三角形中,30角所对的直角边等于斜边的一半。14直角三角形斜边上的中线等于斜边的一半第十三章 实数算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a0时,a才有算术平方根。平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。正数的立方根是正数;0的立方根是0;负数的立方根是负数。数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0第十四章 一次函数1画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点)。2根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。(1)(3)(2)3若两个变量x,y间的关系式可以表示成y=kx+b(k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。(1)(2)(3)4正比列函数一般式:y=kx(k0),其图象是经过原点(0,0)的一条直线。5正比列函数y=kx(k0)的图象是一条经过原点的直线,当k0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,y随x的增大而增大; 当kn).2. 在应用时需要注意以下几点:法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0.任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a0,p是正整数), 而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的; 当a0k0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。x的取值范围是x0, y的取值范围是y0;当k0)。21.2 二次根式的乘除 1. 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(0,0)。说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数;(2)(0,0)可以推广为(0,0); (0,0,0,0)。(3)等式(0,0)也可以倒过来使用,即(0,0)。也称“积的算术平方根”。它与二次根式的乘法结合,可以对一些二次根式进行化简。 2. 二次根式的除法两个二次根式相除,把被开方数相除,根指数不变,即(0,0)。说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,0,在分母中,因此0;(2)(0,0)可以推广为(0,0,0);(3)等式(0,0)也可以倒过来使用,即(0,0)。也称“商的算术平方根”。它与二根式的除法结合,可以对一些二次根式进行化简。3. 最简二次根式(1)被开方数中不含能开方开得尽的因数或因式;(2)被开方数中不含分母。21.3 二次根式的加减 1. 同类二次根式 注:判断几个二次根式是否为同类二次根式,关键是先把二次根式准确地化成最简二次根式,再观察它们的被开方数是否相同。 (2)合并同类二次根式:合并同类二次根式的方法与合并同类项的方法类似,系数相加减,二次根号及被开方数不变。 2. 二次根式的加减 (1)二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。 (2)二次根式的加减法与多项式的加减法类似,首先是化简,在化简的基础上去括号再合并同类二次根式,同类二次根式相当于同类项。 一般地,二次根式的加减法可分以下三个步骤进行: i)将每一个二次根式都化简成最简二次根式 ii)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组 iii)合并同类二次根式 3. 二次根式的混合运算 二次根式的混合运算可以说是二次根式乘法、除法、加、减法则的综合应用,在进行二次根式的混合运算时应注意以下几点: (1)观察式子的结构,选择合理的运算顺序,二次根式的混合运算与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号先算括号内的。 (2)在运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作是“多项式”。 (3)观察式中二次根式的特点,合理使用运算律和运算性质,在实数和整式中的运算律和运算性质,在二次根式的运算中都可以应用。4. 分母有理化 (1)我们在前面的学习中研究了分母形如 形式的分式的分母有理化 综合起来,常见的有理化因式有: 的有理化因式为 , 的有理化因式为 , 的有理化因式为 , 的有理化因式为 , 的有理化因式为 (2)分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。第二十二章 一元二次方程 22.1 一元二次方程 在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。 22.2 降次解一元二次方程 解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:1、直接开平方法: 用直接开平方法解形如(x-m)2=n (n0)的方程,其解为x= m. 2、配方法1.转化: 2.系数化 3.移项: 4.配方: 5.变形: 6.开方: 3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式=b2-4ac的值,当b2-4ac0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac0)就可得到方程的根。 因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。22.3 实际问题与一元二次方程 列一元二次方程解应用题是列一元一次方程解应用题的继续和发展从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等第二十三章 旋转 23.1 图形的旋转 1. 图形的旋转(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。(4)会找对应点,对应线段和对应角。 2. 旋转的基本特征:(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。(2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等;(3)图形在旋转时,图形的大小和形状都没有发生改变。 3. 几点说明:旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。23.2 中心对称 中心对称:把一个图形绕着某一点旋转180,假如它能够与另一个图形重合,那么这个图形关于这个点对称或中心对称。 中心对称的性质:关于中心对称的刘遇图形,对应点所连线段都经过对称中心,而且被对称中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论