




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二轮专题 (十一) 导数与不等式证明【学习目标】1. 会利用导数证明不等式.2. 掌握常用的证明方法.【知识回顾】一级排查:应知应会1.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题比如要证明对任意都有,可设,只要利用导数说明在上的最小值为即可二级排查:知识积累利用导数证明不等式,解题技巧总结如下:(1)利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式.(2)多用分析法思考.(3)对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式.(4)常用方法还有隔离函数法,放缩法(常与数列和基本不等式一起考查),换元法,主元法,消元法,数学归纳法等等,但无论何种方法,问题的精髓还是构造辅助函数,将不等式问题转化为利用导数研究函数的单调性和最值问题.(5)建议有能力同学可以了解一下罗必塔法则和泰勒展开式,有许多题都是利用泰勒展开式放缩得来.三极排查:易错易混用导数证明数列时注意定义域.【课堂探究】一、作差(商)法例1、证明下列不等式: 二、利用证明不等式例2、已知函数(1)若函数处取得极小值0,求的值;(2)在(1)的条件下,求证:对任意的,总有.变式:证明:对一切,都有成立.三、构造辅助函数或利用主元法例3、已知为正整数,且求证:.变式:设函数,().(1)试判断在定义域上的单调性;(2)当时,求证.四、分析法证明不等式例4、设,函数.若曲线在点处的切线与轴平行,且在点处的切线与直线平行(是坐标原点),证明:.变式:已知函数()求函数的单调区间;()证明:对任意的,存在唯一的,使()设()中所确定的关于的函数为,证明:当时,有.五、隔离函数例5、已知函数.()设是的极值点,求并讨论的单调性;()当时,证明:.变式:已知函数其中,且.(1)讨论的单调性;(2)设曲线与轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有;(3)若关于的方程有两个正实数根,求证:六、与数列结合例6、已知函数.(1)求函数的单调区间;(2)求证:变式:(1)已知,求证:;(2)求证:.【巩固训练】1. 已知函数求证:在区间上,函数的图像在函数的图像的下方.2.已知函数()求曲线在点处的切线方程;()求证:当时,;()设实数使得对恒成立,求的最大值3.已知,求证:.4. 设函数.(1)判断的单调性;(2)证明:(为自然对数,).5.已知函数(1)求函数的最小值;(2)设不等式的解集为P,且,求实数a的取值范围;(3)设,证明:.6.已知.(1) 讨论的单调性;(2)证明:(为自然对数,).7. 已知函数(1) 求函数的最大值;(2) 设,证明 :.8.设函数,曲线在点(1,处的切线为. ()求; ()证明:.9. 已知函数(为常数)的图像与轴交于点,曲线在点处的切线斜率为-1.()求的值及函数的极值;()证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高效节水灌溉技术应用-洞察阐释
- 2025年中国气动手掌式磨灰机行业市场发展前景及发展趋势与投资战略研究报告
- 2025年中国汽凿市场调查研究报告
- 网络金融中的供应链金融与电子货币管理研究-洞察阐释
- 2025年中国机械式上传动剪板机市场调查研究报告
- 2025年中国新型包装材料市场调查研究报告
- 2025年中国新能源产业基地建设行业市场发展现状及投资方向研究报告
- 2025年中国手编时尚手提包数据监测研究报告
- 营养干预在疳病中的应用研究-洞察阐释
- 2025年中国小猫头鹰风筝市场调查研究报告
- 《公司理财》期末考试题库(附答案)
- 2023年宜城市中医医院医护人员招聘笔试题库及答案解析
- 医学高级职称评审答辩报告PPT模板
- 《缓解新入园幼儿焦虑策略的研究》课题结题材料(开题报告、中期报告、结题报告、调查问卷、课题论文)
- 健康生活方式基本的知识讲座
- 制造执行系统SMT MES解决方案
- 高二区域地理 撒哈拉以南的非洲课件
- 数字化精密加工车间项目可行性研究报告建议书
- 2022年《内蒙古自治区建设工程费用定额》取费说明
- Q∕GDW 10799.6-2018 国家电网有限公司电力安全工作规程 第6部分:光伏电站部分
- 宁波市建设工程资料统一用表(2022版)1 通用分册
评论
0/150
提交评论