


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时规范练46圆的方程一、基础巩固组1.(2017云南昆明一中模拟)若点A,B在圆O:x2+y2=4上,弦AB的中点为D(1,1),则直线AB的方程是()A.x-y=0B.x+y=0C.x-y-2=0D.x+y-2=02.(2017山西临汾模拟)若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x-3)2+(y-1)2=13.已知实数x,y满足(x+5)2+(y-12)2=122,则x2+y2的最小值为()A.2B.1C.D.4.已知三点A(1,0),B(0,),C(2,),则ABC外接圆的圆心到原点的距离为()A.B.C.D.5.已知圆C的圆心在曲线y=上,圆C过坐标原点O,且分别与x轴、y轴交于A,B两点,则OAB的面积等于()A.2B.3C.4D.86.(2017广东深圳五校联考)已知直线l:x+my+4=0,若曲线x2+y2+2x-6y+1=0上存在两点P,Q关于直线l对称,则m的值为()A.2B.-2C.1D.-1导学号215007567.(2017北京东城区调研)当方程x2+y2+kx+2y+k2=0所表示的圆的面积取最大值时,直线y=(k-1)x+2的倾斜角=.8.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(mR)相切的所有圆中,半径最大的圆的标准方程为.9.已知等腰三角形ABC,其中顶点A的坐标为(0,0),底边的一个端点B的坐标为(1,1),则另一个端点C的轨迹方程为.10.(2017河北邯郸一模)已知圆M与y轴相切,圆心在直线y=x上,并且在x轴上截得的弦长为2,则圆M的标准方程为.二、综合提升组11.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得OMN=45,则x0的取值范围是()A.-1,1B.C.-D.导学号2150075712.已知点P在圆x2+y2=1上,点A的坐标为(-2,0),O为原点,则的最大值为.13.在以O为原点的平面直角坐标系中,点A(4,-3)为OAB的直角顶点,已知|AB|=2|OA|,且点B的纵坐标大于0.(1)求的坐标;(2)求圆x2-6x+y2+2y=0关于直线OB对称的圆的方程.三、创新应用组14.已知平面区域恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,则圆C的方程为.导学号2150075815.(2017北京东城模拟)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|取得最小值时点P的坐标.课时规范练46圆的方程1.D因为直线OD的斜率为kOD=1,所以由垂径定理得直线AB的斜率为kAB=-1,所以直线AB的方程是y-1=-(x-1),即x+y-2=0,故选D.2.A由于圆心在第一象限且圆与x轴相切,因此设圆心为(a,1)(a0).又由圆与直线4x-3y=0相切可得=1,解得a=2,故圆的标准方程为(x-2)2+(y-1)2=1.3.B设P(x,y),则点P在圆(x+5)2+(y-12)2=122上,则圆心C(-5,12),半径r=12,x2+y2=2=|OP|2.又|OP|的最小值是|OC|-r=13-12=1,所以x2+y2的最小值为1.4.B由题意知,ABC外接圆的圆心是直线x=1与线段AB垂直平分线的交点P,而线段AB垂直平分线的方程为y-,它与x=1联立得圆心P坐标为,则|OP|=5.C设圆心的坐标是圆C过坐标原点,|OC|2=t2+,圆C的方程为(x-t)2+=t2+令x=0,得y1=0,y2=,点B的坐标为;令y=0,得x1=0,x2=2t,点A的坐标为(2t,0),SOAB=|OA|OB|=|2t|=4,即OAB的面积为4.6.D曲线x2+y2+2x-6y+1=0是圆(x+1)2+(y-3)2=9,若圆(x+1)2+(y-3)2=9上存在两点P,Q关于直线l对称,则直线l:x+my+4=0过圆心(-1,3),所以-1+3m+4=0,解得m=-1,故选D.7由题意知,圆的半径r=1当半径r取最大值时,圆的面积最大,此时k=0,r=1,所以直线方程为y=-x+2,则有tan =-1,又0,),故=8.(x-1)2+y2=2由mx-y-2m-1=0,可得m(x-2)=y+1,由mR知该直线过定点(2,-1),从而点(1,0)与直线mx-y-2m-1=0的距离的最大值为,故所求圆的标准方程为(x-1)2+y2=2.9.x2+y2=2(除去点(1,1)和点(-1,-1)设C(x,y),根据在等腰三角形中,|AB|=|AC|可得(x-0)2+(y-0)2=(1-0)2+(1-0)2,即x2+y2=2.考虑到A,B,C三点要构成三角形,因此点C不能为(1,1)和(-1,-1).所以点C的轨迹方程为x2+y2=2(除去点(1,1)和点(-1,-1).10.(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4设圆M的标准方程为(x-a)2+(y-b)2=r2,由题意可得解得所以圆M的标准方程为(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4.11.A如图所示,设点A(0,1)关于直线OM的对称点为P,则点P在圆O上,且MP与圆O相切,而点M在直线y=1上运动,由圆上存在点N使OMN=45,则OMNOMP=OMA,OMA45,AOM45.当AOM=45时,x0=1.结合图象知,当AOM45时,-1x01,x0的取值范围为-1,1.12.6方法1:设P(cos ,sin ),R,则=(2,0),=(cos +2,sin ),=2cos +4.当=2k,kZ时,2cos +4取得最大值,最大值为6.故的最大值为6.方法2:设P(x,y),x2+y2=1,-1x1,=(2,0),=(x+2,y),=2x+4,故的最大值为6.13.解 (1)设=(x,y),由|AB|=2|OA|,=0,得解得若=(-6,-8),则yB=-11与yB0矛盾.舍去=(6,8).(2)圆x2-6x+y2+2y=0,即(x-3)2+(y+1)2=()2,其圆心为C(3,-1),半径r=(4,-3)+(6,8)=(10,5),直线OB的方程为y=x.设圆心C(3,-1)关于直线y=x的对称点的坐标为(a,b),则解得故所求的圆的方程为(x-1)2+(y-3)2=10.14.(x-2)2+(y-1)2=5由题意知,此平面区域表示的是以O(0,0),P(4,0),Q(0,2)所构成的三角形及其内部,所以覆盖它且面积最小的圆是其外接圆.因为OPQ为直角三角形,所以圆心为斜边PQ的中点(2,1),半径r=,所以圆C的方程为(x-2)2+(y-1)2=5.15.解 (1)将圆C配方,得(x+1)2+(y-2)2=2.当切线在两坐标轴上的截距为零时,设切线方程为y=kx,由,得k=2,切线方程为y=(2)x.当切线在两坐标轴上的截距不为零时,设切线方程为x+y-a=0(a0),由,得|a-1|=2,即a=-1或a=3.切线方程为x+y+1=0或x+y-3=0.综上,圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版售楼部装饰装修与绿色建筑认证合同
- 2025年度挖掘机整机及配件销售合同
- 2025版服装生产车间承包及订单加工合同
- 乡村旅游与乡村旅游生态旅游融合发展的2025年资金申请研究报告
- 碳捕获与封存技术2025:工业应用案例与市场前景分析
- 2025年工业互联网平台射频识别(RFID)技术与智能工厂生产设备智能化融合创新报告
- 新能源汽车二手车市场评估与流通行业市场细分领域发展研究报告
- 重难点解析鲁教版(五四制)8年级数学下册测试卷(易错题)附答案详解
- 中央纪委国家监委机关直属单位2025年度公开招聘工作人员笔试高频难、易错点备考题库含答案详解
- C2C二手交易平台信誉评价体系建立方案
- 血透护理文书书写规范
- 物业管理的风险管控
- 人教PEP版五年级上册英语全册教案(6个单元整体教学设计)
- S7-200 SMART应用教程2版习题答案 高职SMART习题答案
- 人教版数学八年级上册《全等三角形》单元测试题附答案
- 2023-2024学年沪科版(2019)高中信息技术必修一3.2《解决温标转换问题-认识程序和程序设计语言》教案
- 专升本计算机教学课件-第一章-计算机基础知识(2023新版大纲)
- DB3502T 090-2022 居家养老紧急事件应急助援规范
- 合作共享协议书
- 投标财务状况承诺书范本
- 2024年全国中学生数学奥林匹克竞赛甘肃赛区预赛试题
评论
0/150
提交评论