食品杀菌新技术.doc_第1页
食品杀菌新技术.doc_第2页
食品杀菌新技术.doc_第3页
食品杀菌新技术.doc_第4页
食品杀菌新技术.doc_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

食品杀菌新技术.doc食品杀菌高新技术(一)食品加工目的之一是保护与保存食品,杀死微生物,钝化酶类等。食品腐败变质的主要原因是某些微生物和菌类的存在,每年因此而造成很大的损失,灭菌是食品加工的必经工序。然而传统的热力灭菌不能将食品中的微生物全部杀灭,特别是一些耐热的芽孢杆菌;同时加热会不同程度破坏食品中的营养成分和食品的天然特性。为了更大限度保持食品的天然色、香、味和一些生理活性成分,满足现代人的生活要求,新型的灭菌技术应运而生,本文主要介绍了当今世界食品领域的杀菌新技术及其在我国的发展应用现状。1 微波杀菌技术 微波是一种高频电磁波,当它在介质内部起作用时,水、蛋白质、脂肪、碳水化合物等极性分子受到交变电场的作用而剧烈振荡,引起强烈的摩擦而产生热,这就是微波的介电感应加热效应。这种热效应也使得微生物内的蛋白质、核酸等分子结构改性或失活;高频的电场也使其膜电位、极性分子结构发生改变;这些都对微生物产生破坏作用从而起到杀菌作用。利用微波杀菌,处理时间短,容易实现连续生产,不影响原有的风味和营养成分;并由于其穿透性好的特点,可进行包装后杀菌。 有报导利用 2450 MHz的微波处理酱油,可以抑制霉菌的生长及杀灭肠道致病菌。用于啤酒的灭菌,取得良好的效果,且使啤酒风味保持良好。用于处理蛋糕、月饼、切片面包和春卷皮,结果表明,这些食品的保鲜期由原来3d4d,延长到30d。吴晖报导微波杀菌与一般加热灭菌法相比,在一定的温度下,微波灭菌缩短了细菌和真菌的死亡时间;以枯草芽抱杆菌为材料,微波法的D100为0.65,而对照巴氏法的则为5.5。在相同条件下微波灭菌的致死温度比常规加热灭菌时的低。国外在60、70年代就开始考虑将微波技术应用到鲜奶、啤酒、饼干、面包、猪、牛肉的加工等实际生产中。到90年代,工艺参数和优化已成为研究的热门课题。2 高压杀菌技术 所谓高压杀菌是指将食品放人液体介质中,加100MPa1000MPa的压力作用一段时间后,如同加热一样,杀灭食品中的微生物的过程。高压灭菌通常认为蛋白质在高压下立体结构(四级结构)崩溃而发生变性而使细菌失活,但也有人认为凡是以较弱的结合构成的生物体高分子物质如核酸、多糖类、脂肪等物质或细胞膜都会受到超高压的影响,尤其通过剪切力而使生物体膜破裂,从而使生物体的生命活动受到影响甚至停止,这就可以达到灭菌、杀虫和效果。高压灭菌避免了热处理而出现的影响食品品质的各种弊端,保持了食品的原有风味、色泽和营养价值。由于是液体介质的瞬间压缩过程,灭菌均匀,无污染,操作安全,且较加热法耗能低,减少环境污染。励建荣等研究了经高压处理后的果汁和蔬菜汁,试验证实了高压处理后能达到杀菌效果,而且Vc损失很少,残存酶活只有4,色香味等感官指标不变,其综合效果优于热力杀菌;动物食品也能达到杀菌效果。目前,国外已将其用于肉、蛋、大豆蛋白、水果、香料、牛奶、果汁、矿泉水、啤酒等物品的加工中。我国在该技术的开发应用方面仅仅处于实验室研究阶段,尚未有批量生产的报道。3 高压脉冲电场杀菌技术 高压脉冲技术用于食品灭酶灭菌,主要原理是基于细胞结构和液态食品体系间的电学特性差异。当把液态食品作为电介质置于电场中时,食品中微生物的细胞膜在强电场作用下被电击穿,产生不可修复的穿孔或破裂,使细胞组织受损,导致微生物失活。证实在脉冲电场强度为 1240 Kvcm,脉冲时间为20s18s的条件下,可有效地对食品进行灭菌,且以双矩形波最为有效。邓元修等利用脉冲高压杀灭酵母和大肠杆菌,取得良好的实验结果,且能耗低,对试液温升小于2,因而可有效保存食品的营养成分和天然特征。利用脉冲电场处理大豆,可实现灭酶脱腥,并有效的保留大豆的香气。该技术是一种常温下非加热杀菌的新技术,运用该技术应综合考虑场强的大小,杀菌时间、食品的pH值、对细菌的种类等因素,以确定最佳方案。目前该技术在国际上正处于实验室研究和发展阶段,进一步成熟后很有可能弥补传统杀菌法的不足,给液态食品工艺带来一场变革。4 脉冲强光杀菌技术 脉冲强光杀菌是利用强烈白光闪照的杀菌技术,其系统主要包括动力单元和灯单元,动力单元为惰性气体灯提供能量,灯便放出只持续数百微秒,其波长由紫外光区域至近红外光区域的强光脉冲,其光谱与太阳光相似,但比阳光强几千倍至数万倍。由于只处理食品表面,从而对食品营养成分影响很小, JosephDunn等人研究表明,脉冲强光对多数微生物有致死作用。周万龙等研究表明:光脉冲输人能量为700J,光脉冲宽度小于800us ,闪照30次后,对枯草芽泡杆菌、大肠杆菌、酵母都有较强的致死效果。对溶液中淀粉酶、蛋白酶的活性也有明显的钝化作用。脉冲宽度小于800s,其波长由紫外光区域至红外光区,起杀菌作用的波段可能为紫外光区,其它波段可能有协同作用;脉冲强光杀菌对菌悬液的电导率影响不大,引起电位的变化,其原因及对微生物形态结构的影响尚待进一步研究。食品杀菌高新技术(二)5. 辐射杀菌技术 辐射杀菌是运用射线、射线或电子高速射线照射食品,引起食品中的生物体产生物理或化学反应,抑制或破坏其新陈代谢和生长发育,甚至使细胞组织死亡从而达到灭菌消毒,延长食品贮存销售时间的目的。辐射杀菌几乎不产生热量,可保持食品在感官和品质方面的特性,并适合对冷冻状态的食品进行杀菌处理。与传统的加热法相比更易于准确控制,且耗能低。世界卫生组织已将辐射法纳为安全有效的食品处理方法并制定了相应的标准。 辐射杀菌已在许多国家得到政府的认可并批准使用。在西欧国家运用辐射法对鸡肉、对虾和青蛙腿灭菌;同时辐射法也广泛应用于各种调料的消毒。美国已用在草莓、葡萄、西红柿、鸡肉等方面,受到公众的普遍接受。在我国已对稻谷小麦、玉米、蔬菜、水果、鱼肉辐照保藏技术取得成效,日益显示出广阔的前景,但总的来说辐照法在我国食品工业的运用起步时间较晚,人们对它的作用和优点认识还不深,应加大这方面投入和研究,使之赶上国际先进水平。 6 .臭氧杀菌技术 臭氧是氧的同素异形体,具有极强的氧化能力,在水中的氧还原电位为2.07V,仅次于氟电位2.87V,居第二位,它的氧化能力高于氯(1.36 V)、二氧化氯(1.5V)。正因为臭氧具有强烈的氧化性,所以对细菌、霉菌、病毒具有强烈的杀灭性而且在食品的脱臭、脱色等方面也展示了广阔的前景。其杀菌机理一般认为:臭氧很容易同细菌的细胞壁中的脂蛋白或细胞膜中的磷脂质、蛋白质发生化学反应,从而使细菌的细胞壁和细胞受到破坏(即所谓的溶菌作用)细胞膜的通透性增加,细胞内物质外流,使其失去活性,臭氧破坏或分解细胞壁,迅速扩散到细胞里,氧化了细胞内的酶或DNA、RNA,从而致死病原体。所以食品在采用气体置换包装,真空包装、封人脱氧包装和封人粉末酒精包装时,填充了臭氧以杀灭酵母菌可以解决这些包装的食品的变质问题。臭氧在矿泉水、汽水、果汁等生产过程中,对盛装容器、管路、设备、车间环境的消毒也取得令人满意的效果。 7 .远红外照射杀菌技术 远红外射线与传导加热相比,在致死温度以上时菌的生存率显著下降。在40以下(致死温度以下)的条件下,热能越高菌的生存率越低。杨瑞金报道将细菌、酵母和霉菌悬浮液装人塑料袋中进行远红外线杀菌,其对照功率分别为6KW、8KW、10KW和12KW。结果表明:照射10Min能使不耐热细菌全部杀死。(能使耐热细菌的数量降低1O5108以上;对于酵母菌采用8KW以上的功率,就足以达到抑制的需求;对于霉菌,8KW以上的照射功率照射10Min就可以将活菌完全杀死) 除了上述的几种技术,在国际上还出现了脉冲磁场杀菌、电阻加热杀菌、电离辐射以及在纯净水生产中应用的纳滤膜技术,都在食品工业的不同领域显示出潜在的研究和应用价值。在我国食品工业中大多数产品是利用传统的热力杀菌,由于生产技术的落后,致使一些产品,特别是一些保健产品的质量、档次不高,因此,要加速我国的食品生产技术的更新,来提高产品的档次及在国际市场的竞争力。微波能在肉类制品杀菌保鲜的应用一、概述随着人民生活水平的不断提高和消费观念的变化,对食品工业的产品结 构、质量品质、安全卫生等提出了越来越高的要求,特别是各类传统、方便的袋包装食品,更是成为当今食品市场的一个消费热点。但是在这些食品的生产、保存、运输和销售过程中极易污染变质,从而失去商业价值。虽然国家食品卫生法对各类食品的卫生指标都作了严格规定,但在一般情况下,是很难符合标准的。这不仅大大影响了商品的货架期,而且对保障人民身体健康也是极为不利的。尽管通常可以采用高温干燥、烫漂、巴氏灭菌、冷冻以及防腐剂等常规技术来实现对食品的杀虫灭菌与保鲜。但这些设备大都庞大,处理时间长,灭菌不彻底或不易实现自动化生产,同时往往影响食品的原有风味和营养成份。而微波杀虫灭菌是使食品中的虫菌等微生物,同时受到微波热效应与非热效应的共同作用,使其体内蛋白质和生理活动物质发生变异,而导致微生物体生长发育延缓和死亡,达到食品杀虫、灭菌、保鲜的目的。二、微波杀菌保鲜的机理微波杀菌、保鲜就是希望将食品经微波能处理后使食品中的菌体、虫菌等微生物丧失活力或死亡,保证食品在一定保存期内含菌量仍不超过食品卫生法所规定的允许范围,从而延长其货架期。以下简述微波杀菌保鲜的可能机制:众所周知,细菌、成虫与任何生物细胞一样,是由水、蛋白质、碳水化合物、脂肪和无机物等复杂化合物构成的一种凝聚介质。其中水是生物细胞的主要成份,含量在75-85%,因为细菌的各种生理活动都必须有水参与才能进行,而细菌的生长繁殖过程,对各种营养物的吸收是通过细胞膜质的扩散、渗透吸收作用来完成的。在一定强度微波场的作用下,食品中的虫类和菌体也会因分子极化驰豫,同时吸收微波能升温。由于它们是凝聚态介质,分子间的强作用力加剧了微波能向热能的能态转化。从而使体内蛋白质同时受到无极性热运动和极性转动两方面的作用,使其空间结构变化或破坏而使其蛋白质变性。蛋白质变性后,其溶解度、粘度、膨胀性、渗透性、稳定性都会发生明显变化,而失去生物活性。另一方面,微波能的非热效应在灭菌中起到了常规物理灭菌所没有的特殊作用,也是赞成细菌死亡原因之一。微波杀菌、保鲜是微波热效应和非热效应共同作用的结果。微波的热效应主要起快速升温杀菌作用;而非热效应则使用微生物体内蛋白质和生理活性物质发生变异,而丧失活力或死亡。因此,微波杀菌温度低于常规方法,一般情况下,常规方法杀菌温度要120-130,时间约1小时,而微波杀菌温度仅要70-105,时间约90-180秒。 三、微波杀菌保鲜的特点1、时间短、速度快常规热力杀菌是通过热传导,对流或辐射等方式将热量从食品表面传至内部。要达到杀菌温度,往往需要较长时间。微波杀菌是微波能与食品及其细菌等微生物直接相互作用,热效应与非热效应共同作用,达到快速升温杀菌作用,处理时间大大缩短,各种物料的杀菌作用一般在3-5分钟。2、低温杀菌保持营养成份和传统风味微波杀菌是通过特殊热和非热效应杀菌,与常规热力杀菌比较,能在比较低的温度和较短的时间就能获得所需的消毒杀菌效果。实践表明,一般杀菌温度在75-80就能达到效果,此外,微波处理食品能保留更多的营养成份和色、香、味、形等风味,且有膨化效果。如常规热力处理的蔬菜保留的维生素C是46-50%,而微波处理是60-90%,常规加热猪肝维生素A保持为58%,而微波加热为84%。3、节约能源常规热力杀菌往往在环境及设备上存在热损失,而微波是直接对食品进行作用处理,因而没有额外的热能损耗。此外,其电能到微波能的转换效率在70-80%,相比而方,一般可节电30-50%。4、均匀彻底常规热力杀菌是从物料表面开始,然后通过热传导传至内部。存在内外温差。为了保持食品风味,缩短处理时间,往往食品内部没有达到足够温度而影响杀菌效果。由于微波具有穿透作用,对食品进行整体处理时,表面和内部都同时受到作用,所以消毒杀菌均匀、彻底。 5、便于控制微波食品杀菌处理,设备能即开即用,没有常规热力杀菌的热惯性,操作灵活方便,微波功率能从零到额定功率连续可调、传输速度从零开始连续调整,便于控制。6、设备简单,工艺先进与常规消毒杀菌相比,微波杀菌设备,不需要锅炉,复杂的管道系统,煤场和运输车辆等,只要具备水、电基本条件即可。7、改善劳动条件,节省占地面积设备的工作环境温度低、噪音小,极大地改善了劳动条件。整套微波设备的操作人员只需2-3人。广泛用于牛肉干、猪肉脯、鱼片、酱囟肉、鸭肉、鸡肉等制品的热化、干燥和杀菌,成功地将该产品推向市场取得良好的效果。如果该酱囟肉不采用微波杀菌和保鲜技术,则三天左右时间将会腐败,严重影响销售,达不到预定经济效益。在系统生产熟食品的整个过程中安排一段微波杀菌保鲜工艺将解决延长食品保鲜的关键手段,肉制品经微波杀菌后,其鲜度、嫩度、风味均保持原样,卫生指标完全可低于国家食品卫生标准,货架贮存时间可达1-2个月,微波对肉制品杀菌、保鲜技术的成功应用,由原来保鲜期3天,延长到1-2个月,已将该项技术成果提高到崭新阶段。1、什么是微波? 微波是频率在300兆赫到300千兆赫的电磁波(波长1米 - 1毫米),通常是作为信息传递而用于雷达、通讯技术中。而近代应用中又将它扩展为一种新能源,在工农业上用作加热、干燥;在化学工业中催使化学反应;在科研中激发等离子体等。家用微波炉就是微波能应用的一个典型例子。 我国目前用于工业加热的微波频率为915兆赫和2450兆赫。使用中,可根据加热材料的形状、大小、含水量来选择。 2、微波加热原理通常,一些介质材料由极性分子和非极性分子组成,在微波电磁场作用下,极性分子从原来的热运动状态转向依照电磁场的方向交变而排列取向。产生类似摩擦热,在这一微观过程中交变电磁场的能量转化为介质内的热能,使介质温度出现宏观上的升高,这就是对微波加热最通俗的解释。 由此可见微波加热是介质材料自身损耗电磁场能量而发热。对于金属材料,电磁场不能透入内部而是被反射出来,所以金属材料不能吸收微波。水是吸收微波最好的介质,所以凡含水的物质必定吸收微波。 有一部份介质虽然是非极性分子组成,但也能在不同程度上吸收微波,其原理.二、微波加热的特点1、加热速度快 常规加热如火焰、热风、电热、蒸汽等,都是利用热传导的原理将热量从被加热物外部传入内部,逐步使物体中心温度升高,称之为外部加热。要使中心部位达到所需的温度,需要一定的时间,导热性较差的物体所需的时间就更长。 微波加热是使被加热物本身成为发热体,称之为内部加热方式,不需要热传导的过程,内外同时加热,因此能在短时间内达到加热效果。2、均匀加热 常规加热,为提高加热速度,就需要升高加热温度,容易产生外焦内生现象。微波加热时,物体各部位通常都能均匀渗透电磁波,产生热量,因此均匀性大大改善。3、节能高效 在微波加热中,微波能只能被加热物体吸收而生热,加热室内的空气与相应的容器都不会发热,所以热效率极高,生产环境也明显改善。4、易于控制 微波加热的热惯性极小。若配用微机控制,则特别适宜于加热过程加热工艺的自动化控制。5、低温杀菌、无污染微波能自身不会对食品污染,微波的热效应双重杀菌作用又能在较低的温度下杀死细菌,这就提供了一种能够较多保持食品营养成份的加热杀菌方法。6、选择性加热 微波对不同性质的物料有不同的作用,这一点对干燥作业有利。因为水分子对微波的吸收最好,所以含水量高的部位,吸收微波功率多于含水量较低的部位这就是选择加热的特点。烘干木材、纸张等产品时,利用这一特点可以做到均匀加热和均匀干燥。 值得注意的是有些物质当温度愈高、吸收性愈好,造成恶性循环,出现局部温度急剧上升造成过干,甚至炭化,对这类物质进行微波加热时,要注意制定合理的加热工艺。7、安全无害 在微波加热、干燥中,无废水、废气、废物产生,也无辐射遗留物存在,其微波泄漏也确保大大低于国家制定的安全标准,是一种十分安全无害的高新技术。超高压杀菌食品超高压技术(ultrahigh pressure processing 简称UHP)是当前备受各国重视、广泛研究的一项食品高新技术它可简称为高压技术(High pressure processing,简称HPP)或高静水压技术(High Hydrostatic process,简称HHP)。一、 前言食品贮藏加工是食品工业的关键环节,也是影响食品工业发展的限制因素之一。传统的热加工在杀菌的同时也改变了食品的味道,风味及食品特有的其它特色,更有甚者,食品中的营养成分维生素遭到大量破坏或流失。多少年来科学家一直在寻找和研究工人能够好的食品加工方法。随着高科技的产生和发展,多种新的食品加工和贮藏方法得以发明和发展,如化学保藏法,辐射保鲜法,高压电场加工法以及近年来成为热门的高压加工法。所谓“加压食品”与加热食品同样地是将食品密封于弹性容器或无菌泵系统中,以水或其它流体作为传递压力的媒介物,在高压(100MPa以上,常用400600MPa)下和在常温或较低温度下(一般指在100以下)作用一段时间,以达到加工保藏的目的,而食品味道、风味和营养价值不受或很少受影响的一种加工方法。即以加压取代加热而成。在1899年一位美国化学家Bert Hite首次发现450MPa的高压能延长牛奶的保存期,他和他的同事做了大量研究工作,证实了高压对多种食品及饮料的灭菌效果;美国的物理学家P.W.Briagman (1914)年就提出了在静水压下卵白变成硬的凝胶状和蛋白质变性的报告。但在很长的一段时间里,限于当时的条件如高压加工设备、包装材料、市场对新的加工方法的需求及有关技术等,并没有把这种技术用到食品加工上,虽然P.W.Briagman 于1946年荣获诺贝尔物理学奖。之后,美国人Eyring 、Kauzmann,日本的归山、柳本、铃木等先后深入研究蛋白质的高压变性。这些发现一直没能引起食品工业界的足够重视,以致于该发现被忘却了约一个世纪。 直到上世纪八十年代,人们重新发现它的价值,很多国家正投入大量的人力物力财力开展高压食品加工的研究及应用。1986年日本京都大学农学博士林立凡教授发表了用高压加工食品的研究报告,随之而纷纷开展试验。到1989年在日本高压加工食品用试验机就达到了30台以上。1991年4月日本明治屋食品公司举世首创的应用高压处理技术制造出来的果酱,因未受到传统式加工的热处理,其色香味与组织质地都与新鲜果肉相若而受到消费者欢迎。这期间很多发达国家如德国、美国及欧洲也参与了这方面的研究和竞争。据报道,南朝鲜市场业出售了高压加工的鲜果酱、果汁等。可以说高压加工食品技术是目前世界食品加工业的一个高新技术,是食品长期保存技术上的一种震撼。二、高压加工食品的原理 高压处理食品是先将食品原料充填到塑料等柔软的容器中,密封后再投入到有数千静水压的高压装置中加压处理。 简单的说,食品领域利用高压处理和加工主要是基于食品的主成分水的压缩效果,即高压对液体的压缩作用,导致微生物的形态结构、生物化学反应、基因机制以及细胞壁膜发生多方面的变化,从而影响微生物原有的生理活动机能,甚至使原有功能破坏或发生不可逆变化。它是利用了帕斯卡定律:加在液体上的压力可以瞬间以同样大小转到系统的各个部分。水在高压下体积只被压缩14%,随之而发生的热量也很少,水系中被包着食品中的蛋白质、淀粉等物质,在静水压下也向自身体积减少的方向变化,即形成生物体高分子立体构造的氢键结合、离子结合、疏水结合等非共有结合发生变化。其结果是生命活动停止,蛋白质、淀粉原来的构造破坏、发生变性,酶失去机能,细菌也被杀死。食品工业上就利用这一原理使高压处理后的食品得以安全长期保存。以此相反,形成蛋白质一次构造的氨基酸的缩氨酸结合,是共有结合在数千高压下其构造不发生变化;同样食品中的维生素、香气成分等低分子化合物也具有共有结合,在高压下不发生变化。食品中的微生物是食品加工过程中主要考虑对象之一,也是衡量食品贮藏期的关键指标。大量实验证明高压具有良好的灭菌效果。Hite等(1899)曾进行有关高压处理和牛乳、果汁、蔬菜等食品中微生物之死灭的相关研究,结果指出微生物会因高压而有死灭现象,可惜未引起大家注意。此后研究高压影响完整细胞的工作多半集中在生物界常遇压力下所微生物方面。例如海洋11000m深处细菌的生长情况,这里压力达到100Mpa。多数细菌能够耐流体静压,但在常压下生长最好。直到1988年林立凡研究结果发现不只是蛋白质变性,凡是以较弱的结合构成的生物体高分子物质如核酸、多糖、脂肪等物质或细胞膜都会受到高压的影响,于是生物体的生命活动就会受到影响甚至停止,也就是说高压处理可达到杀菌、杀虫、惰化酶的效果。各种微生物或病原体的耐压性(Baroduric)不尽相同。铃木(1989)曾经以猪肉火腿(腌制肉)加压以探讨一般微生物的消长,结果加压405MPa以上,一般微生物就大量减少。该试验条件是加压时的品温为10以下,达到202、405、607MPa所需时间分别为2、4、7min,达到压力后各保持30min,结果见表1。表1加压处理后猪肉中微生物数量变化加压 压 力(Mpa)一般微生物数(个/g)05.41042022.71043036.7104404300506300607300大森(1991)曾将肉品中常见的腐败菌及食物中毒菌接种在猪肉浆中,在25下加压101607MPa以探讨杀菌可行性,结果发现,大肠杆菌在202.0MPa下未见减少,而303.0MPa以上可达杀菌目的。另外,绿脓菌、沙门氏菌、Campylobacter或Y等都与大肠杆菌一样,在303.0MPa以上就可杀菌。微球菌、葡萄球菌、肠球菌等在303MPa下都未减少,但达到405MPa以上就开始减少,而607MPa就可杀菌。酵母(Sacchaomyces Cereuisiae. Candida Utilis)在 303MPa下几乎减少,但405MPa以上就有杀菌效果。总之,微生物的耐压性依种类而异,但607MPa以上都可杀菌。对芽胞则只观察到极少菌数的减少,同时利用高压杀菌除考虑压力高低之外,加压时间与处理温度都应留意。易子(1991)曾以鲤鱼背肉浆在0下加压0506MPa30in.以及在506MPa下不同时间处理后探讨生菌数,经303MPa处理后生菌数明显减少,增至506MPa后杀菌效果更高,但无法减至0,即无法完全杀菌(如图3所示)。小川浩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论