



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
向量法证明三点共线的又一方法及应用平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明.原题 已知,其中. 求证:、三点共线思路:通过向量共线(如)得三点共线.证明:如图,由得,则、三点共线.思考:1. 此题揭示了证明三点共线的又一向量方法,点具有灵活性; 2. 反之也成立(证明略):若、三点共线,则存在唯一实数对、,满足,且.揭示了三点贡献的又一个性质;3. 特别地,时,点为的中点,揭示了中线的一个向量公式,应用广泛.应用举例例1 如图,平行四边形中,点是的中点,点在上,且. 利用向量法证明:、三点共线.思路分析:选择点,只须证明,且.证明:由已知,又点在上,且,得又点是的中点,即而、三点共线.点评:证明过程比证明简洁.例2如图,平行四边形中,与相交于,求证:. .思路分析:可以借助向量知识,只须证明:,而,又、三点共线,存在唯一实数对、,且,使,从而得到与的关系.证明:由已知条件,又、三点共线,可设,则又、三点共线,则存在唯一实数对、,使,且.又根据、得,解得点评:借助向量知识,充分运用三点共
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46084-2025燃煤锅炉火焰温度图像检测技术规范
- 2022-2023学年上海宝山区七年级(上)第二次月考语文试题及答案
- 应急及安全管理培训课件
- 2024-2025学年度中级软考综合提升测试卷附答案详解(满分必刷)
- 强化训练-人教版7年级数学上册期中试题及答案详解
- 卖水果的合同(标准版)
- 设计转包合同(标准版)
- 2024年安全员考试模拟试题含答案详解(新)
- 2025年海洋生态保护与修复政策对海洋生态系统服务功能可持续性优化报告
- 2025年教育行业投资并购趋势与教育产业投资前景报告
- 公共部门人力资源管理全套PPT完整教学课件
- 中学生必需把握的3500个常用汉字
- GB/T 10299-2011绝热材料憎水性试验方法
- GB 15766.1-2000道路机动车辆灯丝灯泡尺寸、光电性能要求
- 储备粮直属库原粮储存项目安全现状评价报告
- 第四章-清洁生产-清洁生产与循环经济课件
- 重庆医科大学护理学考研大纲
- 干部任免审批表(空白)【电子版】
- 品管圈提高痰培养标本留取率
- 《新能源汽车电力电子技术》全册课件
- 护理管理学第五章 人力资源管理
评论
0/150
提交评论