理论力学第六章╲t分析力学基础.doc_第1页
理论力学第六章╲t分析力学基础.doc_第2页
理论力学第六章╲t分析力学基础.doc_第3页
理论力学第六章╲t分析力学基础.doc_第4页
理论力学第六章╲t分析力学基础.doc_第5页
免费预览已结束,剩余48页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章 分析力学基础本章是动力学问题的引深,将介绍解决刚体和刚体系统动力学问题中经常采用的分析方法,这些方法将在某个方面使动力学问题的解决得以方便或简化,有的方法将直接涉及到动力学分析的计算机应用,这些方法包括达朗贝尔原理、虚位移原理、第一类拉格朗日方程和第二类拉格朗日方程。第一节 达朗贝尔原理达朗贝尔原理(有的书称之为达朗伯原理)的核心是引入惯性力和惯性力矩的概念,从而将动力学问题转化为静力学问题解决。(一) 达朗贝尔惯性力我们已经知道,牛顿第二定律描述了一个质点的运动规律,即 (6.1.1)这里,表示该质点在惯性参考基中的位置,则表示该质点所受外力的主矢量。如果将上式改写为 (6.1.2)再定义 (6.1.3)称为该质点的达朗贝尔惯性力,则牛顿第二定律可以改写为如下形式: (6.1.4)上式可以这样理解:质点的达朗贝尔惯性力与该质点所受到所有真实的外力的矢量和等于零,或者说,质点的达朗贝尔惯性力与该质点所受到所有真实的外力组成一个平衡力系。这个结论称之为质点的达朗贝尔原理。下面就(6.1.4)式作出讨论: 所谓所有真实外力包括主动力和理想约束力。 达朗贝尔惯性力与非惯性基下的牵连惯性力和科氏惯性力是有区别的,后者仅仅是为了将非惯性基下的动力学方程写成类似于惯性基的形式而采用的,显然,它们取决于惯性基的运动,而达朗贝尔惯性力与非惯性基存在与否没有关系,达朗贝尔惯性力的定义为了将相对惯性基的动力学方程改写为另外一种形式,即一种力的平衡形式。 达朗贝尔原理也称为动静法,即动力学问题的静力学处理方法。 达朗贝尔惯性力是描述相对惯性基的运动,所以,它也直接简称为惯性力。对于一个由n个质点组成的质点系统,每个质点的外力中显然包含了系统内其他质点的作用力,但是对于整个系统而言,它们之间的作用力相互抵消,因此,该质点系的外力仅仅是系统外部的作用力,当然包括主动力和理想约束力。于是,质点系统的达朗贝尔原理可以表述为 (6.1.5) (6.1.6)(6.1.6)式的存在是因为对于一个质点系来讲,其外力系是一个任意力系,既有主矢量又有主矩。例6-1-1 单摆的摆长为l,摆锤质量为m,参见图6-1-1,试确定单摆的运动微分方程及绳的张力。解: 建立参考基:如图6-1-1,在支座O建立惯性基和单摆连体基。运动分析:单摆绕O点做定轴转动,其牵连加速度只有:切向牵连加速度 ,方向如图法向牵连加速度 ,方向如图 受力分析:主动力为重力mg理想约束力为绳索拉力FT 惯性力有切向惯性力 方向与切向加速度相反 图 6-1-1 法向惯性力 方向与法向加速度相反 建立摆锤力的平衡方程:由 (1) (2)由(1)可得单摆运动微分方程 由(2)可得绳的张力 例6-1-2 在图6-1-2中,小球P1、P2通过细杆与铅垂轴AB固连,设两个小球质量均为m,不计细杆质量,求轴AB以做匀角速转动时轴承A与B处的受力。解:以A点为基点建立惯性基和连体基,刚体绕铅垂轴AB做定轴转动,两个参考基的y轴重合。考虑某瞬时,根据牵连加速度分析,小球仅有法向牵连加速度,它们的大小为: 方向指向AB轴。 因此,小球的惯性力大小为 方向均离开AB轴。 对整个系统作受力分析,小球除惯性力外,还有重力。A视为固定铰支座,B视为活动铰支座,利用动静法,在该瞬时连体基xy基平面上建立平面一般力系的平衡方程如下: 图 6.1.2 (1) (2) (3)由(3)求得: 代入(1),求得: 由(2)求得: 以上为转动轴的受力,轴承受力与之大小相等方向相反。(二) 平面运动刚体的动静法正如第五章中所描述的,由于刚体的理想约束力往往是未知的,我们可以将刚体的外力分解为主动力和理想约束力,这里我们采用相同的方法。对于某简化中心O,主动力和理想约束力的主矢量仍采用表示,主动力和理想约束力的主矩记为。如果简化中心为刚体的质心,由静力学知识可知,主动力和理想约束力的主矢量将不改变,记号也不改变;但是主矩将由于矩心的改变而改变,此时我们将主动力和理想约束力对质心的主矩记为。根据质点系的达朗贝尔原理(6.1.6)式,刚体的达朗贝尔原理可以表示为: (6.1.7) (6.1.8)上述方程中隐含了加速度的信息,因此是动力学方程的静力学表示,如果考虑上述方程的分量形式一共有6个方程,可以求得6个未知量。需要指出的是,力矩平衡方程的使用具有一定的灵活性,即矩心可以根据需要任意选取,只要注意到:矩心不在质心时,要增加主矢对新的矩心的附加力矩,可见,采用动静法具有其方便性。正确应用动静法的关键在于惯性力和惯性力矩的计算,下面讨论平面运动刚体惯性力和惯性力矩的计算问题。 如图6-1-3,设刚体上任一质点Pk相对定点O和质心C的矢径分别为和,刚体的质心C相对定点O的矢径为,质点Pk的惯性力为,与静力学中真实力简化方法一样,将刚体上所有质点的惯性力向质心简化,可以得到过质心的惯性力主矢量和一力偶矩,其中, (6.1.9)这里,m为整个刚体的质量,为刚体质心的绝对加速度。力偶矩为刚体所有质点惯性力对质心的主矩,即 (6.1.10) 由矢量关系 图6.1.3 (6.1.11)根据质心的定义(参见静力学部分),由于 (6.1.12)(6.1.10)式右边第二项为 (6.1.13)参照刚体关于质心动量矩的定义(4.3.2)式,有 (6.1.14)因此刚体惯性力相对其质心的主矩(6.1.10)可改写为 (6.1.15) 对于平面运动刚体,由于平面的法线方向始终为z轴,因此 (6.1.16) (6.1.17)这里,JC为刚体对过其质心的z轴的转动惯量(用连体基表示),j 为姿态角。(6.1.9)式所表达的惯性力还可以写成分量形式为 (6.1.18)至于动静法所表达的力的平衡方程(6.1.7)和(6.1.8),由于刚体受力为平面力系,共有3个有效方程,可以求得3个未知量。 讨论: 如果刚体只做平动刚体只做平动时,姿态角j 为一常量,由于其角速度、角加速度均为零,惯性主矩为零,此时仅仅存在作用于质心的惯性力主矢量。 如果刚体只做定轴转动刚体只做定轴转动时,假设定轴过O点,其角速度和角加速度分别为 w 和a,此时,刚体上任意一点只有牵连切向加速度和牵连法向加速度,因此,存在牵连切向惯性力和牵连法向惯性力,参见图6.1.4。将刚体上所有惯性力向O点简化,可得惯性力主矢量,考虑到主矢量与简化中心无关,因此,计算惯性力主矢时可以利用质心的加速度。刚体质心加速度同样只有切向和法向牵连加速度: (6.1.19)于是,惯性力主矢为 图6.1.4 (6.1.20)其中, (6.1.21) 为惯性力主矢的两个分量,分别称为刚体的牵连切向惯性力和牵连法向惯性力。 此时,刚体所有惯性力对O点的惯性力主矩则为 (6.1.22)例6.1.3 一边长为b的正方形板,质量为m,可在铅锤平面内绕固定铰支座A转动,E角用一绳索系于H点,如图6.1.4(a)所示,如果将绳索剪断,求该瞬时支座A处的反力。解: 对方形板作受力分析,主动力为重力,作用于质心C,A处有约束反力和,参见图6.1.4(b)。如果我们采用动静法求解本问题,需要确定质心惯性力和惯性力矩,为此,要确定质心加速度和方形板对质心的转动惯量。方形板在绳索剪断的瞬时,将绕A点做定轴转动,但角速度为零,设角加速度为a,方向逆时针。质心加速度仅有切向牵连加速度 其方向如图6.1.4(b)所示。于是,方形板的惯性力主矢量、即质心惯性力为 图 6.1.4方向与质心加速度相反。方形板对质心惯性力矩为: 根据动静法,建立如下力的平衡方程: (1) (2) (3-a) 从解方程角度看,惯性力简化中心选在A点较C点好,参见图6.1.4(c)。此时,惯性力主矢量大小方向均不变,对A点惯性力矩为 再利用动静法建立力的平衡方程,(1)、(2)式不变,第三式由于避开未知的约束反力改为 (3-b)由(3-b),可求得 代入(1)、(2)式,可分别求得 例6.1.4 质量为m,长为l的均质杆AB的一端A与半径为r的圆盘的边缘固结,圆盘在水平面上以角速度j 和角加速度a 绕O点转动。求图6.1.5(a)所示瞬时杆AB在A处的约束反力。解: 在支座O建立惯性基。采用动静法求解约束反力,需要确定AB杆的质心加速度,杆AB绕O做定轴转动,角速度和角加速度均不为零,因此,具有切向牵连加速度和法向牵连加速度,它们的大小分别为图6.1.5方向如图6.1.5(a)所示。对AB杆进行受力分析,参见图6.1.5(b),主动力为重力;理想约束力为固定端A的3个约束反力;质心惯性力、惯性力矩大小分别为 方向如图。下面建立平衡方程 求解上述3个方程,可得 例6-1-5 两根质量为m、长为l的均质杆OA和AB以铰链相连,铰链与机座O连接。求在图示位置无初速开始运动时两杆的瞬时角加速度。解:这是刚体系统问题,若采用动静法进行动力学分析,同样首先要确定各个刚体的惯性力和惯性力矩,为此需要分析各个构件的运动。 运动分析参见图6-1-6(a),OA杆显见作定轴转动,而AB杆做平面一般运动。对于OA杆,在O点建立连体基,其质心为C1,根据定点加速度表达式 (1)其中,由于基点不动和初速为零,如果假设OA杆角加速度为,可得该杆质心加速度为 (2)对于AB杆,在A点建立其连体基,其质心为C2,其加速度表达式为 (3)其中,移动牵连加速度就是A点的加速度。由OA杆可以得到 (4) 图 6-1-6参见图(a)。 假设AB杆角加速度为,其牵连切向加速度则为, (5) 同样由于初速为零,其牵连法向加速度也等于零,因此,可得AB杆质心加速度为 (6) 惯性力分析 对于OA杆,质心惯性力与其加速度方向相反,大小为 (7)对质心惯性力矩为 (8)方向与其角加速度方向相反。对于AB杆,为了方便分析质心惯性力,我们可以将其加速度投影到惯性坐标系方向,参见图(b),投影值为 (9)于是可得AB杆质心惯性力为 (10)AB杆质心惯性力矩为 (11)方向与其角加速度方向相反。 图 6-1-6 建立静力平衡方程系统除了各杆的惯性力外,还有主动力、即各杆的重力,铰支座O的约束反力,为了避开未知的理想约束力,我们将合力矩简化中心选为O。 (12)又对于A点,建立AB杆力矩平衡方程 (13)考虑到初始时刻,并将(7)、(8)、(10)、(11)代入上面两式,解得 第二节 虚位移原理(一) 虚位移的概念如图6-2-1所示,假设一个质点在外力作用下的运动轨迹用实线表示,经过某dt时刻,其位移的无限小增量为dq,然而,该质点还存在可能的运动轨迹,因为,在保证约束条件不破坏的前提下,外力作用(大小、方向)发生改变时, 该质点的运动发生变化,我们用虚线表示这种可能运动,显见这种可能运动有无限多。我们将某个时刻可能运动与真实运动之间的无限小差值称为虚位移。准确地定义是:系统从真实位形过渡到任何相邻近的可能位形过程中,系统各质点所具有的与真实运动无关的、为约束所容许的无限小位移称为虚位移。虚位移采用符号q表示。是微分的概念,是变分的概念,虽然概念不同但是它们都具有无限小 的意义,因此它们具有相同的数学运算规则。 图 6-2-1设某一完整系统,其中任一质点Mi的矢径用广义坐标表示,可以记为 (6-2-1)该矢径的微分是 (i = 1 , 2 , , N) (6-2-2)其变分、即虚位移则为 (i = 1 , 2 , , N) (6-2-3)这里,根据虚位移的定义,对于某个时刻, 根据以上定义,可见虚位移具有无限小、可任意取值的性质。 对于整个系统,假设系统位形的坐标阵为 (6-2-4)这里,为第k点在惯性系中的坐标阵。可见系统位形的坐标阵q为3N个分量组成的列阵。系统位形还可以写作广义坐标的形式: (n = 3N) (6-2-5)对于完整系统、即对于只有位形约束而没有速度加速度约束的系统,其约束方程可以写作下面的通式: (6-2-6)式中,为s个约束方程组成的列阵 (6-2-7)根据微分的定义,约束方程的微分形式为 (6-2-8)这里,称为约束方程的雅克比,是所有s个约束方程分别对3N个坐标的偏导数组成的矩阵; (6-2-9) 则为所有s个约束方程分别对时间t的偏导数组成的列阵: (6-2-10)(6-2-6)式的变分形式由于t = 0则为 (6-2-11)这里,q就是虚位移。这与(6-2-3)式是一致的。 约束方程反映了系统内各个质点位形间存在作某些制约关系,因此,3N个位形坐标间并不是完全相互独立,如果约束方程有3个,则独立坐标的个数只有 (6-2-12)就是前面提到的系统的自由度。 有时,我们可以将3N个坐标分成独立坐标和不独立坐标两部分,如果将个独立坐标存入列阵w,而将s各不独立坐标存入列阵u,于是,系统的位形坐标阵可以记为 (6-2-13)这样,约束方程的雅克比也可以分解为独立与不独立两部分 (6-2-14)当不独立部分的雅克比满秩(可逆)时,利用(6-2-11)式可以确定不独立坐标虚位移与独立坐标虚位移间的关系 (6-2-15)于是,系统位形的坐标阵中的所有坐标可以表示为独立坐标的函数,即 (6-2-16)上式隐含了系统的约束方程(6-2-6)式,独立坐标w完全确定了系统的位形。由微分关系: (6-2-17)可以得到虚位移与独立坐标虚位移间的关系为 (6-2-18)在实际解题过程中,独立坐标并不一定非要在位形坐标中选取,有时可以另外选取相互独立的参数作为独立的位形坐标,只要可以建立不独立坐标与独立坐标之间的关系、描述系统的位形即可,这样做,可以回避不独立部分的雅克比需要满秩的条件。因此,往往称独立坐标w为广义坐标。例6-2-1 图6-2-2为一单摆,摆长为l,求摆的虚位移。解:在惯性参考系中,摆的位形坐标为 (1)约束方程为 (2) 图6-2-2因此,系统为一个自由度。假设选取x为独立坐标,则y为不独立坐标,即 (3)于是求得摆的虚位移为 (4) 下面考察和之间的关系。由约束方程的雅可比,有 (5)时,为满秩。代入(6-2-15)式,可得 (6)于是有 (7) 正如前面提到的,我们也可以另外选取独立坐标,比如选为广义坐标,此时摆的位形坐标与的关系可知为 (8)上式x、y分别取变分得到 (9)最后可得摆的虚位移 (10)上述两种选取广义坐标的方法,各有其优点,究竟采用那种方法应该依问题的具体情况来定,原则是,应该使问题变得简单。例6-2-2 一曲柄滑块机构,如图6-2-3,曲柄长r,连杆长l,已知该机构只有一个自由度,如果选取曲柄的转角为广义坐标,求A、B点的虚位移与广义坐标虚位移的关系。解: 建立惯性基。由于A点的坐标与广义坐标的关系为 (1)取变分可得虚位移 图 6-2-3 (2) 要确定B点的坐标需要引入角,利用几何关系,有 (3)对它们取变分可得 (4)由于系统只有一个自由度,独立广义坐标为,因此,需要找出与的关系,即 (5)其变分关系为 (6)代入(4)式,得到B点的虚位移为 (7)其中,由(5)式确定。(二) 理想约束在静力学部分,我们已经有了理想约束的概念,建立了虚位移的概念后,理想约束还可以这样定义:其约束反力在系统的任何虚位移上所作的元功之和等于零的约束。工程实际中结构或构件的约束大多可以近似地认为是理想约束, 如刚性连接、滚动接触、光滑接触等。根据以上对理想约束的定义,如果系统中第i个质点所受的约束反力为,其虚位移为,则有 (6-2-19)上式的投影形式为 (6-2-20)(三) 虚位移原理及其应用在静力学部分我们已经知道,一个质点系统处于静力平衡时,系统中任一质点所受的外力之和等于零,即 (6-2-21)式中,表示作用于i质点上主动力合力,表示i质点上约束反力的合力。如果给该质点一个虚位移,则有 (6-2-22)对于整个系统有 (6-2-23)若系统为理想约束,根据(6-2-19)式,可得 (6-2-24)上式说明,对于一个理想约束系统,其静平衡的充要条件是:作用于系统上的主动力在任何虚位移上作的元功之和等于零。我们称之为虚位移原理。上式的展开形式为: (6-2-25)利用虚位移原理可以求得约束反力,特别对于复杂的机构,虚位移原理在求未知力方面具有较大的优越性。例6-2-3 图6-2-4为一简易压榨机的示意图,在A处施力可在C处产生较大压力。假设滑道和铰链均为光滑,机构各部分尺寸如图所示,试确定系统平衡时主动力及阻力的关系。解: 根据虚位移原理,对于一个理想约束系统,其静平衡的充要条件是:作用于系统上的主动力在任何虚位移上作的元功之和等于零。 图 6-2-4 因此,首先要判断系统自由度,选取广义坐标,确定沿各力作用方向的虚位移。 该系统为一个自由度,选取为广义坐标,在O点建立参考基。于是,可确定A点的坐标为 (1)由于C点沿y方向的位移与B点相同,因此,可以通过B点的虚位移来确定C点的虚位移。 (2)对(1)(2)两式取变分,有 (3) (4)根据(6-2-25)式,系统所有主动力的虚功为 (5)整理可得 (6)利用,最后可求得C处的阻力与A处的压力间的关系为 (7)例6-2-4 椭圆规工作原理如图6-2-5所示,滑块A和B与长为l的杆AB铰接,如果略去机构各个构件的自重和摩擦,求该机构在图示位置平衡时主动力和的关系。解:解法一,解析法,通过坐标变分求虚位移。 由于主动力和仅分别沿滑块A的y方向和B的x方向做功,因此,只需确定A的y坐标和B的x坐标及其变分: (1)代入虚功方程(6-2-25)式,得到 (2)由于,可得主动力间的关系为 (3)解法二,速度法,所谓速度法是根据变分运算与微分运算的一致性,速度是坐标对时间的一次微分,因此,如果知道了某点速度的表达式,就可以得到该点的坐标变分,即该点的虚位移。这种方法对于由于机构复杂而难以确定某点坐标位置、但是易于其确定速度的情况具有明显的优点。 本例中,明显存在机构的速度瞬心S,因此,A点和B点的速度分别为 于是,A、B两点分别沿y和x方向的虚位移为 方相如图6-2-5(b)。代入虚功方程后,同样可以得到 最后同样求得主动力间的关系为 例6-2-4 图6-2-6(a)为一三铰拱结构,假设该拱结构的自重不计,试求其在力和力偶矩的作用下铰B的约束力。解: 三铰拱是一种完全约束的结构,即自由度为零,因此,采用虚位移原理是首先要解除某个约束赋予其运动自由度。既然要求分析铰B的约束力,我们可以解除铰B的水平约束并代之以约束反力,注意,此时应将该约束力视为主动力,参见图6-2-6(b)。 系统具有一个自由度,可以给曲杆AC一个微小转动、即虚角位移,此时,曲杆BC的瞬心位于S,这样,各个力作用点的虚位移分别为 (1)系统主动力的虚功为 (2)即 (3)于是可得 (4)解除铰B的垂直约束,代之以约束力,参见图6-2-6(c),同样给曲杆AC一个微小转动、即虚角位移,此时,曲杆BC的瞬心位于A,这样,各个力作用点的虚位移分别为 (5)系统主动力虚功为: (6)即 (7)最后可得: (8)第三节 动力学普遍方程如图6-3-1,研究非自由系统中任一质点Mi的运动,假设该质点的质量为mi ,在约束条件下沿某一轨迹运动,任一时刻所受的主动力为,约束反力为,其加速度为,由牛顿第二定律,有: (6-3-1)如果我们将主动力分解,使其一个分力等于,由于该分力使质点的运动状态发生变化,可称之为有效力;另一个分力设为,其表达式为 图6-3-1 (6-3-2)显然,这是主动力与有效力之差,故且称之为损失力。同时,我们不难看出,有效力与损失力大小相等方向相反,为一对平衡力,即 (6-3-3)对于N个质点组成的质点系统,则有 (6-3-4)若系统为一理想系统,根据理想约束的定义,即(6-2-19)式,可得 (6-3-5)由损失力的定义,有 (6-3-6)与动静法(6-2-24)式比较可以看出,如果在上式中令加速度等于零,就是(6-2-24)式。因此,上式实际上是虚位移原理在动力学问题中的推广。我们称之为达朗伯拉格朗日原理,或称为动力学普遍方程。该原理可以表述为:在任一时刻,所有损失力在系统的任何虚位移上的元功之和等于零。也可以说,在任一时刻,所有主动力和惯性力在系统的任何虚位移上的元功之和等于零。第四节 第二类拉格朗日方程直接应用动力学普遍方程解决工程问题时,由于方程本身形式上的局限性往往存在一定的困难。于是,人们研究如何将动力学普遍方程进行某种改造以得到适用于工程需要的的形式。其中,第二类拉格朗日方程是以广义坐标为变量、以能量形式表示的动力学方程,由于其为标量方程,并且方程数较少(等于自由度数)以及方程中不包含约束反力等优点,被广泛用于各类机构动力学模型的建立。(一) 第二类拉格朗日方程 设某一理想、完整的力学系统由N个质点组成,系统自由度为n,广义坐标为。第i个质点的矢径为 (6-4-1)由虚位移的概念可知,该质点的虚位移为 (i = 1 , 2 , , N) (6-4-2)将其代入动力学普遍方程(6-3-6)式,可得 (6-4-3)改变求和顺序,并将加速度写作,于是,上式可以改写为 (6-4-4)上式左边括号内第一项称为对应于广义坐标的广义力,记为 (6-4-5)括号内第二项中的可以按照分部微分写作如下变式 (6-4-6)根据(6-2-2)式,有 (i = 1 , 2 , , N) (6-4-7)将上式两边对求偏导,可得 (6-4-8)代入(6-4-6)式,得到 (6-4-9)于是,(6-4-4)式左边括号内第二项为 (6-4-10)式中,即系统的动能。将(6-4-5)和(6-4-10)代入(6-4-4)式,可得 (6-4-11)上式即为用广义坐标表示的以能量形式出现的动力学普遍方程。其中,表示作用于系统上的主动力的虚功之和,表示系统中所有惯性力虚功之和。 对于完整系统,由于虚位移相互独立且具有任意性,由(6-4-11)可得 (6-4-12) 或写作 (6-4-13)上式称为第二类拉格朗日方程。这是以n个广义坐标为变量的二阶常微分方程组,方程数等于系统的自由度数,时间t为参变量,因此,如果知道系统的动能T和主动力的广义力Qj,就可以建立该系统的动力学模型。(二) 广义力的计算正如前面的分析,采用第二类拉格朗日方程时关键在于确定系统的动能T和主动力的广义力Qj,系统动能的分析计算我们已经熟悉了,下面讨论广义力的计算方法。 主动力的广义力的计算通常有以下几种方法1 按照广义力的定义计算根据主动力的广义力的定义,即(6-4-5)式,我们可将该式改写成投影的形式 (6-4-14)显然,系统主动力较多或者自由度较多时,这种计算方法比较繁琐。2 利用系统的虚功计算由于完整系统的广义坐标及其变分(虚位移)彼此独立,我们可以给定某个虚位移而令其余的n-1个虚位移等于零,这样,作用于系统上的所有主动力(假设共有m个)对应于该虚位移上的元功之和应该满足 (6-4-15)于是,可求得对应于广义坐标的广义力为 (6-4-16)3 主动力为保守力的广义力若作用于系统上的主动力为保守力,可通过势函数V求得保守力的广义力。需要指出的是,此时,系统的势函数应该用广义坐标表示,即V = V(qi,t)。于是,有 (6-4-17)下面看一个例子。例6-4-1 一平面双摆机构,参见图6-4-1,设摆锤A、B的重分别为P1、P2,杆长分别为l1、l2,不计杆重,选取1和2为广义坐标,确定系统的广义力。解: 1按广义力定义计算由于是平面问题,沿Z向的主动力的分力均为零,而 图 6-4-1 (1) A、B两点的坐标,用广义坐标表是为 (2) 其微分形式为 (3)因此,对应于广义坐标1和2的广义力分别为 (4) (5) 2利用系统的虚功计算系统主动力为P1和P2,它们所作的虚功为和,由(3)式,可得A、B两点沿x方向的虚位移分别为 (6)令则对应于广义坐标1的系统虚功为 (7)于是,对应于广义坐标1的广义力Q1为 (8)同理,令,则 (9)因此,对应于广义坐标2的广义力Q2为 (10) 3由于主动力P1和P2均为保守力,可由系统的势函数求广义力 系统的势能用广义坐标表示为 (11)因此,利用式(6-4-17),可以直接求得广义力 (12)(三) 拉格朗日函数由计算广义力的第三种方法可以看出,主动力为保守力时,广义力与系统势能间的关系为 (6-4-18)而势函数显然与广义坐标的微分、即广义速度无关,因此,下式为一恒等式 (6-4-19)将上面二式代入第二类拉格朗日方程(6-4-13)式,可得 (6-4-20)即 (6-4-21)如果令L = T V,第二类拉格朗日方程(6-4-13)式可以改造为 (6-4-22)这里,L称为拉格朗日函数。(四)第二类拉格朗日方程应用举例尽管第二类拉格朗日方程在建立系统的动力学模型时具有明显的优点,但是,方程中隐含的坐标的二阶微分使得方程的建立比较繁琐,推导过程冗长,同时,对方程的求解往往无法得到解析解而只能做数值解。 下面就建立系统的动力学模型举几个例子例6-4-2 质量为m、半径为r的均质薄圆盘,沿径向焊接一质量为m、长为r的均质细棒,圆盘可以在水平面上作纯滚动,参见图6-4-2,建立系统的运动微分方程。解: 系统为单自由度,选取为广义坐标,系统的动能包括圆盘的动能和细棒的动能, 其中,圆盘、细棒对中心的转动惯量分别为 (1)细棒质心C的速度为 (2)利用余弦定理求得该速度平方 (3) 图6-4-2于是系统的动能为 (4)主动力均为保守力,其势能用广义坐标表示为 (5)因此,拉格朗日函数 (6)代入拉格朗日方程(6-4-22)式,相应的微分结果为 (7)最后可得该系统动力学方程为 (8)例6-4-3 如图6-4-3所示,一长为l的单摆B2的一端铰接在一可沿光滑的水平直线轨道平行移动的滑块B1上,利用拉格朗日第二类方程建立系统的动力学方程。解:建立惯性基与滑块B1的连体基,系统有两个自由度。选取滑块B1在x轴上的坐标x与单摆B2偏离铅垂的偏角j 为广义坐标。 先对系统作运动分析:滑块B1的绝对速度为 图6-4-3 (1)摆球B2相对动基为动点,因此,摆球的速度为 (2)其中,相对速度的大小为,方向如图垂直于摆杆;牵连速度的大小为,方向如图水平向右。因此,摆球B2的绝对速度为 (3)由上述运动学分析结果,可得系统的动能为 (4)主动力为有势力,以y = 0为零势面,系统的势能为 (5)拉格朗日函数L = T V,计算相关微分 (6) (7)将式(6)与(7)代入式(6-4-22),经整理,得到系统的动力学方程为 (8) (9)第五节 第一类拉格朗日方程理论力学讨论的都是非自由系统,就是说,系统中各个部分的位形、运动状态存在着某种约束关系,如果将这种约束关系嵌入动力学普遍方程之中,可以得到动力学普遍方程的又一种形式,即拉格朗日第一类方程。下面我们将讨论拉格朗日第一类方程的表达形式及其应用。(一) 第一类拉格朗日方程前面的学习中已经知道,由N个质点构成的质点系的位形坐标阵可以表示为 (6-5-1)该系统共有3N个坐标,假设系统所受到的约束中,独立约束方程数为s个,即 (6-5-2)其中, (6-5-3)因此,该系统的独立位形坐标、即系统的自由度只有 (6-5-4)如果约束方程中包含非完整约束,动力学普遍方程 (6-5-5)的虚位移并不相互独立,就是说,该方程组共有3N个方程,其中只有个是独立的,因而方程无法求解。但是,如果将s个约束方程作某些改造并引入s个待定系数,然后加到动力学普遍方程中,通过适当选取待定系数,使得虚位移前的系数等于零,则该方程组可以求解。由(6-5-1)式,动力学普遍方程,即(6-5-5)式可以改写成 (6-5-6)这里,表示系统所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论