二次根式章节知识点题型及巩固习题.doc_第1页
二次根式章节知识点题型及巩固习题.doc_第2页
二次根式章节知识点题型及巩固习题.doc_第3页
二次根式章节知识点题型及巩固习题.doc_第4页
二次根式章节知识点题型及巩固习题.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次根式知识点一: 二次根式的概念定义:一般地,形如(a0)的代数式叫做二次根式。称为二次根号。 注意:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,等是二次根式,而,等都不是二次根式。 例1下列式子,哪些是二次根式,哪些不是二次根式:、(x0)、-、(x0,y0)知识点二:取值范围1、 二次根式有意义的条件:由二次根式的意义可知,当a0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2、 二次根式无意义的条件:因负数没有算术平方根,所以当a0时,没有意义。例2当x是多少时,在实数范围内有意义?例3当x是多少时,+在实数范围内有意义?知识点三:二次根式(a0)的非负性(a0)表示a的算术平方根,也就是说,(a0)是一个非负数,即(a0)。注:因为二次根式(a0)表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即(a0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。例4(1)已知y=+5,求的值(2)若=0,求a2004+b2004的值知识点四:二次根式的性质=a(a0)文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式=a(a0)是逆用平方根的定义得出的结论。例1 计算 例2在实数范围内分解下列因式:(1) (2) 知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。例1 化简 (1) (2) (3) (4)例2 填空:当a0时,=_;当aa,则a是什么数?例3当x2,化简知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的乘除1、 乘法(a0,b0) 反过来:=(a0,b0)2、除法(a0,b0) 反过来,(a0,b0) 例1计算(1)4 (2) (3) (4) 例2 化简(1) (2) (3) (4) 例3判断下列各式是否正确,不正确的请予以改正: (1) (2)=4=4=4=8 例4计算:(1) (2) (3) (4) 例5化简:(1) (2) (3) (4)例6已知,且x为偶数,求(1+x)的值知识点八:最简二次根式与同类二次根式1、最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式;(2)被开方数中不含开得尽方的因数或因式2、化简最简二次根式的方法:(1) 把被开方数(或根号下的代数式)化成积的形式,即分解因式;(2) 化去根号内的分母(或分母中的根号),即分母有理化;(3) 将根号内能开得尽方的因数(或因式)开出来(此步需要特别注意的是:开到根号外的时候要带绝对值,注意符号问题)3、同类二次根式:被开方数(因式)相同的(最简)二次根式叫同类二次根式。 判断是否是同类二次根式时务必将各个根式都化为最简二次根式。如与例1把下列二次根式化为最简二次根式(1) ; (2) ; (3) 知识点九:二次根式的加减1、二次根式的加减法:先把各个二次根式化为最简二次根式,再把被开方数相同的二次根式(即同类二次根式)进行合并。(合并方法为:将系数相加减,二次根式部分不变),不能合并的直接抄下来。 例1计算(1)+ (2)+ (3)3-9+3 (4)(+)+(-)例3已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值【基础训练】1化简:(1)_ _; (2)_ _; (3)_ _;(4)_ _; (5)。2.(16,安徽)化简=_。3.(16,武汉)计算的结果是( ).2 2 -2 44. 化简:(1)(16,泰安)的结果是 ; (2)的结果是 ;(3)(16,宁夏)= ; (4)(16,黄冈)5-2=_ _;(5)(16,宜昌)(5)=_; (6) ;(7)(16,荆门)_; (8) 5(16,重庆)计算的结果是( )A、6 B、 C、2 D、6.(16,遵义)若,则 7. (16,聊城)下列计算正确的是( ) A B CD8.下列运算正确的是( ) A、 B、 C、 D、9(16,中山)已知等边三角形ABC的边长为,则ABC的周长是_;10. 比较大小:。11(16,嘉兴)使有意义的的取值范围是 12.(16,常州)若式子在实数范围内有意义,则x的取值范围是( ) A.x-5 B.x0,n0) 2、 化简-3() (a0)3、化简 、 4、 当x=时,求+的值(结果用最简二次根式表示) 5、 已知x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论