




文档简介
SICE ICASEInternationalJointConference2006 Oct 18 21 2006inBexco Busan Korea ImprovedDesignandControlExperimentsofanUnderwaterElectricManipulator QifengZhang2 AiqunZhang KuichenYan ShenyangInstituteofAutomation ChineseAcademyofSciences Shenyang China 2GraduateSchooloftheChineseAcademyofSciences Beijing China Tel 86 024 23970731 E mail zqfW Abstract Autonomous Semi autonomousworkingunderwatervehicleisadevelopmenttrendofunderwatervehicles Thispaperbrieflyanalyzestherequirementsofunderwaterelectricmanipulatortobeequippedonautonomous underwatervehicles anddesignsathree functionunderwaterelectricmanipulatortest bed Thetest bedhasthe characteristicsofcompactconfiguration completefunctionandwithbigmomentoutput Butexteriorcablelayout increasesthepossibilitytoarisemalfunctionespeciallywhenthemanipulatorworkinginwater Animproveddesignof themanipulatorwithinnercablelayoutisalsopresentedinthispaper Basedonthefrequencycharacteristicsoftherotaryjointdrivenmodule thePIcorrectionisdesignedtocontrolthe shoulderandelbowjoint sangularrate Thentheangleerrorisregardedastheinputofangularratecontrolloopaftera PIDController andaNon regressorAdaptiveController whichhasbeenwidelyadoptedasaneffectivemeansin underwatervehiclecontrol isalsousedtocontrolthemanipulatorasaselectivemethod Experimentresults demonstratethegoodeffectofthePIDandtheadaptivecontrollersincontrollingjointangle andwiththeinnercontrol loop theNon regressorAdaptiveControllerismorerobustthanthatwithoutinner loop anditisamoreappropriate controllerthanPIDcontrollerespeciallyinprotectingthemanipulator smotorsfromsaturatedvoltage Keywords underwaterelectricmanipulator autonomousunderwatervehicles adaptivecontroller 1 INTRODUCTION Inrecentyears underwatervehiclesbecomean increasinginterestofresearchcommunityandindustry Today itiscommontousemannedunderwatervehicles toaccomplishmissionsatseabottom butitisof enormouscostandriskinsuchadangerous environment Scientistswishtoperformunderwater missionsinacompletelyautonomousway soone researchfocusofthisfieldisontheautonomous semi autonomousunderwatervehicle manipulator system Becauseofenergy powerandefficiency underwaterelectricmanipulatorisabsolutelyanecessity forautonomous semi autonomousunderwatervehicle manipulatorsystem Thedesignofunderwaterelectric manipulatorandcoordinatedcontrolbetweenitand vehicleareimportantjobbeingdonebyseveral institutes Forexample theinteractionbetweena one linkmanipulatorandOTTERAUVisstudiedin Stanforduniversityfrom1995 1 SAUVIMP 2 a semi autonomousvehiclewitha7 DOFelectric manipulatorisunderdevelopmentattheAutonomous SystemLaboratoryofUniversityofHawaii a semi autonomousunderwatervehicleforevaluationof manipulatortechnologyhasbeendevelopedinKorea OceanResearchandDevelopmentInstitute 3 andan underwaterelectricmanipulatordrivenbymagnet couplingtobeequippedforTwin BurgerAUVhasbeen designedbyKyushuInstituteofTechnologywithother Institutes 4 Asacomponentofautonomous semi autonomousunderwatervehicle manipulatorsystem mediumandsmall sizedunderwaterelectric manipulatorismuchmoredexterousandeasyto producethanhydraulicmanipulator sousing underwaterelectricmanipulatortoexploitoceanis muchmorepromising Thethree functionunderwaterelectricmanipulator 89 950038 5 598560 06 10C2006ICASE test beddesignedinthispaperistobeequippedwitha SmallAutonomous RemotelyOperatedVehicle SARV whichisatest beddesignedbyShenyangInstituteof Automation theChineseAcademyofSciences Itisa vehicleforevaluationofbothAUVandROV technologies Lightworkinginscientificapplication withfiber visionandmanipulatormoduleisoneofthe importanttechnologiestobestudied Inthispaper wefirstgivethedesignofthe manipulatortest bed animproveddesignoftherotary moduleisthenpresented basedonthefrequency characteristicofrotarymodulebeingtested weadopta PIcontrollertoregulatetheangularrateofthetwo joints andPID Non regressorAdaptiveControllers 5 areusedtocontrolthejointangle Theexperiment resultswiththecontrollersareanalyzedatlast 2 UNDERWATERELECTRIC MANIPULATORTEST BEDDESIGN 2 1MechanismDesign AccordingtotheSmallAutonomous Remotely OperatedVehicle thethree functionunderwater manipulatorisdesignedasshowninfigure1 The manipulatorcomposesofaclawandtwoswingjoints Theclawisasimplebindinymechanismdrivenbyan insidestepmotor Theshoulderjointandelbowjointare drivenbysamerotarymodule whichcanprovidemuch moremomentthanthatneededintheworkingstatus beingdesigned Byexchangingtheinstallationposition ofthejointlink thearmcanrotateorpivot Therotary moduleincludesaDCtorque motor aharmonic drive reducer afail safebrakeandanincrementalrotary encoder Tocompactthestructureoftherotarymodule andminimizeitsdimensionandweight thetorque motorandharmonic drivereducerarecoreparts and 3089 withtheencoder theyhavethesamerotaryaxis the torquesupportpolecanpreventtheencoderbodyfrom rotatingwiththeaxis linkl link2 soulderjoint rivenmodule elowjointdven awdriven module motor Fig 1Theunderwaterelectricmanipulator Fig 2Rotaryjointdrivenmodule 2 2ElectronicDesign TwoPWMservoamplifiers aMicroStepping ChopperDrivesareselectedtodrivetheDCmotorand stepmotor ThePWMservoamplifiersarefully protectedagainstover voltage over current over heatingandshort circuitacrossmotor groundand powerleads voltageoperatingmodeisusedtodrive DCmotor Tosatisfytheunderwaterworking environmentandbeinstalledinthevehiclestightly a micro computerPC 104ischosenasthecontrollerof thesystemandADT650 theextendedcardofPC 104 isusedasthedatasamplingcard Thecardcontainsa12 bitA D aD Aconverter a16bitcounter timer a24 linesDigital1O whichcanaccomplishallwork includingmonitorcurrent outputvoltage sample encodersignal drivestepmotor controlbrakeand checkwaterproof 2 3SoftwareDesign TheQNXoperatingsystemandCprogramming languageareappliedtothePC 104 Thefollowingare maincontentsofsoftwaredesign 1 DCmotorcurrentmonitoring TomonitortheDCmotorstatusandtoprotectthe PWMservoamplifier 2 DCmotorvoltagecontrol ToregulatetheanalogsignalstoPWMsoasto controltheDCmotor svoltagesupply 3 Encodersignalssampling Toreadthecountnumberof82C54counterof ADT650tocalculatetheangularrateofrotaryjoint and toestimatethedirectionofjointrotatingbytheDigital I 0interfacewiththedirectionsignalofencoder 4 Stepmotordrive TosendpulsesignalstotheSteppingChopper Drivestocontrolthespeedanddirectionofthestep motor andtoenablethesignalstobecontrolledby DigitalI 0 5 Waterproofdetection Todetectthevoltageofdetectingpointsplacedat sealspositionbyDigitalI 0 6 Rotatingrangelimit Toavoidinterferencebetweenmanipulatoritselfand betweenthevehicleandmanipulator andtolimitthe rotatingrangeofeachjoint 7 Controllerdesign Designcontrollertomakethemanipulatorswing accordingtothecommand 3 ANIMPROVEDDESIGNOFROTARY JOINTDRIVENMODULE Largenumbersofunderwaterexperimentshavebeen doneuptonowandtheexperimentsvalidatethe feasibilityandreliabilityofourdesignasatest bed But theexteriorcablelayoutisahiddentroubleweworry about Toovercometheproblem aselectiveimproving designoftherotaryjointdrivenmodulewithinnercable layoutismadeasshowninfigure3 Noadditional componentsareaddedtotheimproveddesign Fig 3Improveddesignofrotaryjointdrivenmodule withinnercablelayout 4 ANGULARRATECONTROLOF SHOULDERANDELBOWJOINTS 4 1Frequencycharacteristictestingexperiment TheDCmotor svoltagesupplyrangesfrom 24Vto 24V andthegainofPWMservoamplifieris4 8 Give inputsignaltoPWMas VoltagePWM 5sinwt V 1 Theangularrate rad s ofrotarymoduleshould be 3090 Angle ratejoint A co sin ca qp rad s 2 DefineL 0 20A w 51asthe magnitude frequencycharacteristic bymeasuringA S andq withdifferenta andcalculatingL S wegetthe bodediagramofthesystemasshowninfigure4 coj 8 andcw2 30aretwoinflexionofmagnitude frequency characteristiccurve mechanismresonanceoccurswhen cw 55and 1800here sowecangetatwo rank transferfunction whichcanbeusedtoanalyzethe system G s 0 174031 0 125s 1 0 033s i 3 120 101010 Fig 4Bodediagramofrotarymodulewithno load 4 2ANGULARRATECONTROLANDEXPER IMENTOFTHETWOJOINTS Onland themanipulatorswingsintheverticalplane thesametestingmethodisadoptedtoanalyzethe shoulderandelbowfrequencycharacteristics Test resultsshowthattheelbowjointfrequency characteristicsareclosetothatoftherotarymodulebut theshoulderjoint sisdifferentinsomesort Stillcol 8 isthefirstinflexionofshoulderjoint s magnitude frequencycharacteristiccurveandco correspondingto 1800iscloseto50 butthe secondinflexionofshoulderjoint smagnitude frequencycharacteristiccurveisnotclear sowith differentelbowjointangle Tocontroltheangularrateofthemanipulatorjoint thefirstcontrollerwethinkofisaPIDcontroller Since derivativeactionrequiresgoodaccelerationfeedback signalthattheencodercan tsupply wedesignthesame PIcontrollerKp i is toanalyzeandcontrastthe twojoints response Givestepsignal ro 0 7 rad s as angularrate command Whent 0 jointangularratea 0 error e roandtheintegraldoesnotact thePWMvoltage supply VoltagepwM KpXrO 4 WechooseKp 4 4atthebeginningandthePWM voltagesupplyis3VandtheDCmotorvoltagesupply is14 4V whichisoutofthesystem sdeadzoneand doesn texceedthelimitofpowersupply Theopen looptransferfunctionwithPIcorrectionis C s 0 77 1 1 Ts s 0 125s l T2s 1 whereT2 1 w2 w2 take7 0 125can maximizethefrequencywidthofintermediate frequency 6 Thesecularequationofthesystem s close looptransferfunctionwithPIcontrolleris A s Ts2 s 6 16 6 Thecontrolsystem sframeworkisasfigure5 controller manipulatorjoint angularrate Fig 5Frameworkoftheangularratecontrolsystem Figure6showstheresponsecurveofthetwojoint withPIcontroller Theelbowjointangleiszerowhen controllingangularrateoftheshoulderjoint Good resultisobtainedincontrollingelbowjoint sangular rate However sincethegravitymomentvariestoo much thePIcontrollerwiththesameparameters doesn tactshoulderjoint sangularratewell Figures7and8aretheexperimentcurveofangular ratecontrolofelbowjointandshoulderjoint respectively Contrastexperimentsbetweenunderwater andonlandarepresented Resultsshowthatthe responsecurveismuchmoresmoothandofhigh precisionwhenthemanipulatorisinwater 50 40 30 20 10 angularratecommand deg s angularrateofshoulderjoint deg s angularrateofelbowjoint deg s l I Time s 01234567 Fig 6Stepresponseofshoulderandelbowjoint angularratewiththesamePIcontroller 13 F 1 1 0 9 0 7 0 5 0 3 01 1 elbowangularratecom underwaterverticalplane underwaterhorizontalplane verticalplaneonland Time s 3456 Fig 7Stepresponsecurvesofelbowjointangularrate underdifferentconditions 13 Fm 10 where f ando5arepositiveconstants and ee e 11 whereaisapositiveconstant InPIDcontrolexperiments wefindthatitismuch morerobustandwithhighprecisionwhenwith inner loop Onereasonisthatthevoltagedeadzoneof thejointmotorisabout 5V 5V soinadaptivecontrol withandwithoutinner looparebothexperimented Whenwithoutinner loop tomakethesystemresponse morequickly 5visaddedtotheoutputofcontroller toovercomethedeadzone Figure12istheframework ofadaptivecontrolwithinner loop andtheinner loop s parametersarethesameasthoseofthePIDcontroller hX W ro adaptive mtola controllercOntrlle j it 2imanipulatorJoint angularrate angle Fig 12Frameworkoftheadaptiveanglecontrolsystem withinner loop 0 8 0 6 0 4 0 2 Elbowanlgecommand Elbowanlgeresponse withoutinnerloop Elbowanlgeresponse withinnerloop Time s 02 557 51012 51517 520 5 2ExperimentswithAdaptivecontroller Althoughresultswithhighprecisionisachievedwith PIDcontroller therealsoexitsaproblemthatthe invariablePIDparameterscan tmeetallconditionswell especiallyinthebeginningofstepresponsewhenthe jointanglewarpisthebiggest overshootandvoltage saturationwilloccur Thevariousangle loadand environmentchangesneedamoreadaptiveandrobust controller Theadaptivecontrollerexperimentedinthispaperis basedontheadaptivecontrolwithboundestimation developedbyYuh 5 7 Thecontrollawisexpressed Fig 13Stepresponseofelbowjointanglecontrast betweenwithandwithoutinner loop Theelbowjoint sstepresponseexperimentcurveof adaptivecontrollerisshowninfigure13 Elbowjoint angle scontrolrangeis500inhorizontalplaneof underwater wehaveresultsasfollows whenwithsame parametersofadaptivecontroller itresponsesmore quicklyandwithhigherprecisionintheconditionof withinner loop Thecontrolerrorofwithandwithout inner loopisabout0 25 and0 40orespectivelywhen responsetimeis15s 3092 A fiIlillllq i11 i 11 5 5 3ExperimentscontrastbetweenPIDandAdaptive controller Asmentionedinabovepart PIDcontrollerwith invariableparametershasproblemsincontrollingthe manipulator oneoftheimportantisthatinthe beginningofresponse voltagesaturationoccursand willdamagetheDCmotor Thisproblemiswellsolved byadaptivecontroller Atthesametime other performancesdon tdescend Theelbowjointangle response elbowjointangleerrorandmotorcontrol voltage 24v curvesofthetwodifferentcontrollersare showninfigure14 angleadaptive 1 2 avoltageaaaptve Erroradlaptive 0 8 06 0 4 0 2 I 0123456 0 2 langlePID voltagePID ErrorPID 4 M Ishitsuka S SagaraandK Ishii Dynamics AnalysisandResolvedAccelerationControlofan AutonomousUnderwaterVehicleEquippedwitha Manipulator ProceedingsofUT 04 pp 277 280 2004 5 J Yuh J NieandC S G Lee ExperimentalStudy onAdaptiveControlofUnderwaterRobots Proceedingsofthe1999IEEEInternational ConferenceonRobotics Autmation Vol 1 No 1 pp 393 398 1999
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地基基础工程施工设备维护方案
- 城区地下老旧供热管线检测评估方案
- 9.17 高山流水志家国-古琴 教学设计-2023-2024学年高中音乐人音版(2019)必修音乐鉴赏
- 2025年安全生产第三季度工作总结范例(二篇)
- 医院旧楼改造粉尘污染控制方案
- 加油站储油设施防渗漏技术方案
- 2025年急诊科创伤抢救处理模拟考试卷答案及解析
- 产业园供水管道泄漏检测技术方案
- 海相沉积土地基处理技术方案
- 2025重庆市柑橘原料采购协议合同(参考文本)
- 新生儿内科专业质控中心督查内容与要求评分表
- 实验动物遗传学及质量控制课件
- 新能源概论全解课件
- 《中国的行政区划》- 完整版课件
- 《中国公民科学素质基准》题库500题(精品)
- 机器视觉技术及应用全套课件完整版电子教案最新板
- 道路工程实施重点、难点分析及解决方案
- Minitab教程源数据及六西格玛绿带手册相关工作表 鱼骨图
- 35KV集电线路铁塔组立专项方案
- 金矿堆浸成套设备
- 劳务派遣服务月考核表
评论
0/150
提交评论